We give three equivalent conditions for non-accessibility of an Anosov diffeomorphism on the 3-torus with a partially hyperbolic splitting. Since accessibility is an open property, this gives a negative answer to Hammerlindl's question about homology boundedness of strong unstable foliation. Keywords Partially hyperbolic, accessible, homology bounded
Let X be a C1 vector field on a compact boundaryless Riemannian manifold M(dim M≥2),and A a compact invariant set of X.Suppose that A has a hyperbolic splitting,i.e.,T∧M = Es Eu with Es uniformly contracting and Eu uniformly expanding.We prove that if,in addition,A is chain transitive,then the hyperbolic splitting is continuous,i.e.,A is a hyperbolic set.In general,when A is not necessarily chain transitive,the chain recurrent part is a hyperbolic set.Furthermore,we show that if the whole manifold M admits a hyperbolic splitting,then X has no singularity,and the flow is Anosov.
Let Ψ be the geodesic flow associated with a two-sided invariant metric on a compact Lie group. In this paper, we prove that every ergodic measure μ of Ψ is supported on the unit tangent bundle of a flat torus. As an application, all Lyapunov exponents of μ are zero hence μ is not hyperbolic. Our underlying manifolds have nonnegative curvature (possibly strictly positive on some sections), whereas in contrast, all geodesic flows related to negative curvature are Anosov hence every ergodic measure is hyperbolic.