Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.
Fiber orientation and dispersion in the dilute fiber suspension that flows through a T-shaped branching channel are simulated numerically based on the slender-body theory. The simulated results are consistent qualitatively with the experimental data available in the literature. The results show that the spatial distribution of fibers is dependent on the fiber aspect ratio, but has no relation with the volume fraction of fiber. The content ratio of fibers near the upper wall increases monotonically with an increasing Re number, and the situation is reverse for the region near the bottom wall. The orientation of fibers depends on Re number, however, the function of fiber volume fraction and aspect ratio is negligible. The fibers near the wall and in the central region of the channel align along the flow direction at all times, but the fibers in the other parts of the channel tend to align along the flow direction only in the downstream region.
The equations for fiber suspensions in an evolving mixing layer were solved by the spectral method, and the trajectory and orientation of fibers were calculated based on the slender body theory. The calculated spatial and orientation distributions of fibers are consistent with the experimental ones that were performed in this paper. The relationship between the microstructure of fibers and additional stress was examined. The results show that the spatial and orientation distributions of fibers are heterogeneous because of the influence of coherent vortices in the flow, which leads to the heterogeneity of the additional stress. The degree of heterogeneity increases with the increasing of St number and fiber aspect ratio. The fibers in the flow make the momentum loss thickness of the mixing layer thicker and accelerate the vorticity dispersion.