The rolling process is determined by the interaction of a number of different movements,during which the relative movement occurs between the vibrating roll system and the rolled piece,and the roll system's vibration interacts with the strip's deformation and rigid movement.So many parameters being involved leads to a complex mechanism of this coupling effect.Through testing and analyzing the vibration signals of the mill in the rolling process,the rolling mill's coupled model is established with comprehensive consideration of the coupling interaction between the mill's vertical vibration,its torsional vibration and the working roll's horizontal vibration,and vibration characteristics of different forms of rolling mill's vibration are analyzed under the coupling effect.With comprehensive attention to the relationship between the roll system,the moving strip and the rolling parameters'dynamic properties,and also from the strip thickness control point of view,further research is done on the coupling mechanism between the roll system's movement and the moving strip's characteristics in the rolling process.As a result,the law of inertial coupling and the stiffness coupling effect caused by different forms of the roll system's vibration is determined and the existence of nonlinear characteristics caused by the elastic deformation of moving strip is also found.Furthermore,a multi-parameter coupling-dynamic model is established which takes the tandem strip mill as its research object by making a detailed kinematics analysis of the roll system and using the principle of virtual work.The coupling-dynamic model proposes the instruction to describe the roll system's movement,and analyzes its dynamic response and working stability,and provides a theoretical basis for the realization of the strip thickness'dynamic control.
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.