The approximate correction of the additive white noise model in quantized Kalman filter is investigated under certain conditions. The probability density function of the error of quantized measurements is analyzed theoretically and experimentally. The analysis is based on the probability theory and nonparametric density estimation technique, respectively. The approximator of probability density function of quantized measurement noise is given. The numerical results of nonparametric density estimation algorithm demonstrate that the theoretical conclusion is reasonable. Based on the analysis of quantization noise, a novel algorithm for state estimation with quantized measurements also is proposed. The algorithm is based on the least-squares estimator and unscented transform. By least-squares estimator, the effective information is extracted from the quantized measurements. Also, using the information to update the estimated state can give a better estimation under the influence of quantization. The root mean square error (RMSE) of the proposed algorithm is compared with the RMSE of the existing methods for a typical tracking scenario in wireless sensor networks systems. Simulations provide a strong evidence that this tracking algorithm could indeed give us a more precise estimated result.
Interval-valued data and incomplete data are two key problems for failure analysis of thruster experimental data and have been basically solved by the proposed methods in this paper. Firstly, information data acquired from the simulation and evaluation system formed as intervalvalued information system (IIS) is classified by the interval similarity relation. Then, as an improvement of the classical rough set, a new kind of generalized information entropy called "H'-information entropy" is suggested for the measurement of uncertainty and the classification ability of IIS. There is an innovative information filling technique using the properties of H'-information entropy to replace missing data by some smaller estimation intervals. Finally, an improved method of failure analysis synthesized by the above achievements is presented to classify the thruster experimental data, complete the information, and extract the failure rules. The feasibility and advantage of this method is testified by an actual application of failure analysis, whose performance is evaluated by the quantification of E-condition entropy.