Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.
High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epi- taxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low tem- perature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 lain is about 2.5 × 10.7 μA at the bias voltage of-1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.
The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photoluminescence from Ge quantum wells on SOI substrate is strongly modulated by Fabry-Perot cavity formed between the surface of Ge and the interface of buried SiO2. The photoluminescence peak intensity at 1.58 μm is enhanced by about 21 times compared with that from the Ge/SiGe quantum wells on Si substrate, and the full width at half maximum (FWHM) is significantly reduced. It is suggested that tensile strained Ge/SiGe multiple quantum wells are one of the promising materials for Si-based microcavity lijzht emitting devices.