Hierarchical nitrogen-doped carbon nanocages (hNCNC) with large specific surface areas were used as a catalyst support to immobilize Pt nanoparticles by a microwave-assisted polyol method. The Pt/hNCNC catalyst with 20 wt% loading has a homogeneous dispersion of Pt nanoparticles with the average size of 3.3 nm, which is smaller than 4.3 and 4.9 nm for the control catalysts with the same loading supported on hierarchical carbon nanocages (hCNC) and commercial Vulcan XC-72, respec- tively. Accordingly, Pt/hNCNC has a larger electrochemical surface area than Pt/hCNC and Pt/XC-72. The Pt/hNCNC catalyst exhibited excellent electrocatalytic activity and stability for methanol oxidation, which was better than the control catalysts. This was attributed to the en- hanced interaction between Pt and hNCNC due to nitrogen participation in the anchoring function. By making use of the unique advantages of the hNCNC support, a heavy Pt loading up to 60 wt% was prepared without serious agglomeration, which gave a high peak-current density per unit mass of catalyst of 95.6 mA/mg for achieving a high power density. These results showed the potential of the Pt/hNCNC catalyst for methanol oxidation and of the new hNCNC support for wide applications.
The unique hierarchical nitrogen-doped carbon nanocages(h NCNC) are used as a new support to homogeneously immobilize spinel Co Fe_2O_4 nanoparticles by a facile solvothermal method. The so-constructed hierarchical Co Fe_2O_4/h NCNC catalyst exhibits a high oxygen reduction activity with an onset potential of0.966 V and half-wave potential of 0.819 V versus reversible hydrogen electrode, far superior to the corresponding 0.846 and 0.742 V for its counterpart of Co Fe_2O_4/h CNC with undoped hierarchical carbon nanocages(h CNC) as the support, which locates at the top level for spinel-based catalysts to date.Consequently, the Co Fe_2O_4/h NCNC displays the superior performance to the Co Fe_2O_4/h CNC, when used as the cathode catalysts in the home-made Al-air batteries. X-ray photoelectron spectroscopy characterizations reveal the more charge transfer from Co Fe_2O_4 to h NCNC than to h CNC, indicating the stronger interaction between Co Fe_2O_4 and h NCNC due to the nitrogen participation. The enhanced interaction and hierarchical morphology favor the high dispersion and modification of electronic states for the active species as well as the mass transport during the oxygen reduction process, which plays a significant role in boosting the electrocatalytic performances. In addition, we noticed the high sensitivity of O 1 s spectrum to the particle size and chemical environment for spinel oxides, which is used as an indicator to understand the evolution of ORR activities for all the Co Fe_2O_4-related contrast catalysts. Accordingly,the well-defined structure-performance relationship is demonstrated by the combination of experimental characterizations with theoretical calculations. This study provides a promising strategy to develop efficient, inexpensive and durable oxygen reduction electrocatalysts by tuning the interaction between spinel metal oxides and the carbon-based supports.
将含氮聚合物聚苯胺(PANI)均匀地担载到具有大比表面积、多级孔结构和高导电性的3D碳纳米笼(CNC)表面,再热解PANI制得了N掺杂位富集于表面、且具有优良导电性的碳基纳米材料.通过改变热解温度和前驱物中PANI的含量,对热解产物的表面N含量和导电性进行了调控.优化得到的NCNC-2-900催化剂具有优异的氧还原反应(ORR)催化性能,其起始电位高(-46 m V vs Ag/Ag Cl),明显优于体相N掺杂的CNC(-105 m V),且稳定性好(运行10 h后仍保留96%活性).该结果表明在保持良好导电性的同时增加表面N掺杂位是提高碳基材料ORR活性的有效途径.
The uniform cauliflower-like ZnO films were deposited on the conducting substrate by a chemical bath deposition in urea/water solution. The film structure and morphology were characterized by X-ray diffraction, thermo- gravimetric differential thermal analysis, energy dispersive spectroscopy, selected area electron diffraction, field emission scanning electron microscopy and high resolution transmission electron microscopy. The average diameter of ZnO nanoparticles and the petal thickness were 25 nm and 8 μm, respectively. Dye- sensitized solar cells based on the cauliflower-like ZnO film electrode showed the short-circuit current density of 6.08 mA/cm2, the open-circuit photovoltage of 0.66 V, the fill factor of 0.55 and the overall conversion efficiency of 2.18%. The equivalent circuit of cells based on the ZnO film electrodes was measured by the electrochemical impedance spectroscopy. Furthermore, the analysis of equivalent circuit provided the relationship between the cell performance and the interracial resistance, such as the shunt resistance and the series resistance.
Yuqiao WangXia CuiYuan ZhangXiaorui GaoYueming Sun
Phosphors with controlled emission spectra are of great interest due to their application for white light emitting diodes.Herein, a new class of Sr3Y2(SiO3)6:Ce3+,Tb3+ phosphors were synthesized by a facile sol-gel combustion method. The phase structure,morphology, and luminescence properties of the phosphors were characterized by using powder X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and photoluminescence excitation and emission spectra,respectively. The results on luminescence properties indicated that co-doped Ce3+ ions served as UV-light sensitizers with excitation energy partially transferred to Tb3+ ions, leading to green emission from Tb3+. Particularly, the corresponding emitting colors of the phosphors could be well-tuned from deep blue(0.16, 0.05) to green region(0.25, 0.45) by adjusting the molar ratio of Ce3+/Tb3+.