The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W_2 CoB_2 with 0, 10, and 20 at.%Mn doping content. The cohesive energy and formation energy indicate that all the structures can retain good structural stability. According to the calculated elastic constants, Mn is responsible for the increase of ductility and Poisson's ratio and the decrease of Young's modulus, shear modulus, and bulk modulus. By using the population analysis and mechanical properties, the hardness is characterized through using the five hardness models and is found to decrease with the Mn doping content increasing. The calculated electronic structure indicates that the formation of a B–Mn covalent bond and a W–Mn metallic bond contribute to the decreasing of the mechanical properties.
Water atomized pure iron powder was compacted by high velocity compaction (HVC) with and without upper relaxation assist (URA) device. The influence of URA device on green density, spring back, green strength and hardness was studied. Morphological characteristics of the samples were observed by scanning electron microscope (SEM). Green strength of the samples was measured by computer controlled universal testing machine. The results show that as stroke length increases, the green density, green strength and hardness of the compacts increase gradually. At the identical stroke length, the green density of the compacts pressed with URA devise was 2% higher than the compacts pressed without URA device. The green strength and hardness of the compacts pressed with URA device were higher than the compacts pressed without URA device. Furthermore, the radial spring back of the compacts decreased gradually with the increment in stroke length, whilst that of compacts prepared with URA device was lower.
Dil Faraz KHANHaiqing YINZahid USMANMatiullah KHANXianjie YUANWenhao WANGXuanhui QU
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing.
Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule.