您的位置: 专家智库 > >

国家自然科学基金(61300055)

作品数:4 被引量:2H指数:1
相关作者:严迪群王让定金超更多>>
相关机构:宁波大学更多>>
发文基金:国家自然科学基金浙江省自然科学基金更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 3篇自动化与计算...
  • 1篇电子电信

主题

  • 1篇倒谱
  • 1篇倒谱系数
  • 1篇时长
  • 1篇谱系数
  • 1篇码率
  • 1篇回放
  • 1篇混合模型
  • 1篇高斯
  • 1篇高斯混合
  • 1篇高斯混合模型
  • 1篇SPEECH...
  • 1篇YOUR
  • 1篇DETECT...
  • 1篇ENERGY
  • 1篇EXAMPL...
  • 1篇MDCT
  • 1篇MP3
  • 1篇RESAMP...
  • 1篇INCONS...
  • 1篇PROTEC...

机构

  • 2篇宁波大学

作者

  • 2篇王让定
  • 2篇严迪群
  • 1篇金超

传媒

  • 1篇计算机工程与...
  • 1篇无线通信技术
  • 1篇Comput...
  • 1篇Comput...

年份

  • 1篇2023
  • 1篇2019
  • 1篇2018
  • 1篇2017
4 条 记 录,以下是 1-4
排序方式:
Speech Resampling Detection Based on Inconsistency of Band Energy
2018年
Speech resampling is a typical tempering behavior,which is often integrated into various speech forgeries,such as splicing,electronic disguising,quality faking and so on.By analyzing the principle of resampling,we found that,compared with natural speech,the inconsistency between the bandwidth of the resampled speech and its sampling ratio will be caused because the interpolation process in resampling is imperfect.Based on our observation,a new resampling detection algorithm based on the inconsistency of band energy is proposed.First,according to the sampling ratio of the suspected speech,a band-pass Butterworth filter is designed to filter out the residual signal.Then,the logarithmic ratio of band energy is calculated by the suspected speech and the filtered speech.Finally,with the logarithmic ratio,the resampled and original speech can be discriminated.The experimental results show that the proposed algorithm can effectively detect the resampling behavior under various conditions and is robust to MP3 compression.
Zhifeng WangDiqun YanRangding WangLi XiangTingting Wu
与时长相关的相同码率MP3双压缩检测方法被引量:1
2017年
通常MP3语音的篡改过程会经过解压、篡改、重压缩三个操作,它不可避免地会产生双压缩。因此MP3语音的双压缩检测是MP3语音篡改检测的必要条件。通过分析量化MDCT系数在不同时长下的统计特征,建立拟合模型,提出一种与时长相关的相同码率MP3双压缩检测方法。该方法不仅可以快速有效地实现对MP3语音的双压缩检测,而且还揭示了语音时长与检测率的关系。
陶表犁王让定严迪群金超
Adversarial Examples Protect Your Privacy on Speech Enhancement System
2023年
Speech is easily leaked imperceptibly.When people use their phones,the personal voice assistant is constantly listening and waiting to be activated.Private content in speech may be maliciously extracted through automatic speech recognition(ASR)technology by some applications on phone devices.To guarantee that the recognized speech content is accurate,speech enhancement technology is used to denoise the input speech.Speech enhancement technology has developed rapidly along with deep neural networks(DNNs),but adversarial examples can cause DNNs to fail.Considering that the vulnerability of DNN can be used to protect the privacy in speech.In this work,we propose an adversarial method to degrade speech enhancement systems,which can prevent the malicious extraction of private information in speech.Experimental results show that the generated enhanced adversarial examples can be removed most content of the target speech or replaced with target speech content by speech enhancement.The word error rate(WER)between the enhanced original example and enhanced adversarial example recognition result can reach 89.0%.WER of target attack between enhanced adversarial example and target example is low at 33.75%.The adversarial perturbation in the adversarial example can bring much more change than itself.The rate of difference between two enhanced examples and adversarial perturbation can reach more than 1.4430.Meanwhile,the transferability between different speech enhancement models is also investigated.The low transferability of the method can be used to ensure the content in the adversarial example is not damaged,the useful information can be extracted by the friendly ASR.This work can prevent the malicious extraction of speech.
Mingyu DongDiqun YanRangding Wang
基于带阻滤波倒谱系数的回放语音检测算法被引量:1
2019年
语音技术的发展及高保真设备的普及,使得回放语音给声纹认证系统的安全性带来了极大挑战;为此,本文提出一种基于带阻滤波倒谱系数的回放语音检测算法.该算法从特征层面和分类器层面对原始语音和回放语音进行了差异性分析,提出在时域使用带阻滤波的方法来保留高频和低频信号;然后将滤波后的信号进行倒谱特征提取并使用高斯混合模型进行分类;最后为验证本文提出的算法的有效性,我们将该算法在ASV spoof 2017数据库上进行了实验验证.结果 表明,我们提出的算法等错误概率为9.75%,相较于ASV spoof 2017数据库两种基线系统,本算法在等错误率方面分别有60%和20%的提升.
胡君王让定严迪群林朗
关键词:高斯混合模型
共1页<1>
聚类工具0