您的位置: 专家智库 > >

国家重点基础研究发展计划(s2010CB428504)

作品数:1 被引量:2H指数:1
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇天文地球

主题

  • 1篇OCEAN
  • 1篇ANOMAL...
  • 1篇DIPOLE
  • 1篇EL_NIN...
  • 1篇INDIAN
  • 1篇MODE

传媒

  • 1篇Scienc...

年份

  • 1篇2014
1 条 记 录,以下是 1-1
排序方式:
Influences of Indian Ocean interannual variability on different stages of El Nio: A FOAM1.5 model approach被引量:2
2014年
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphere- ocean coupled model, we conducted two experiments (CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature (SST) modes to the occurrence of E1 Nino events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of E1 Nino events during the boreal autumn in an E1 Nino developing year. However, it weakens E1 Nino events or even promotes cold phase conversions in an E1 Nino decaying year. Therefore, the en- tire period of the E1 Nino is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the E1 Nino developing years, the positive Indian Ocean Dipole (IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer E1 Nino event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin (IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Nino decaying years. As a result, the E1 Nino event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the E1 Nino during the developing years, whereas the IOB mode affects the E1 Nino during the decaying years.
HONG XiaoYuanHU HaiBoYANG XiuQunZHANG YuanLIU GuoQiangLIU Wei
共1页<1>
聚类工具0