In this paper, uniform titania (TiO2) films have been formed at 50℃ on silanol SAMs by the liquid-phase deposition (LPD) method at a temperature below 100℃. OTS (Octadecyltrichloro-Silane) selfassembled monolayers (SAMs) on glass wafers were used as substrates for the deposition of titanium dioxide thin films. This functionalized organic surface has shown to be effective for promoting the growth of films from titanic aqueous solutions by the LPD method at a low temperature below 100℃. The crystal phase composition, microstructure and topography of the as-prepared films were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicate that the as-prepared thin films are purely crystallized anatase TiO2 constituted by nanorods after being annealed at 500℃. The pH values, concentration of reactants, and deposition temperatures play important roles in the growth of TiO2 thin films.
HE ZhongLiang, YU ZhiWei, MIAO HongYan, TAN GuoQiang & LIU Yan School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
SrTiO3 thin film was successfully prepared on the functionalized organic self-assembled monolayers(SAMs) by the Liquid Phase Deposition(LPD) method.The as-prepared samples were characterized by X-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscopy(SEM) and metallographic microscope.Measurement of contact angle showed that the hydrophobe substrate was changed into hydrophile by UV irradiation.AFM photographs of octadecyl-trichloro-silane self-assembled monolayer(OTS-SAM) surface approved that UV irradiation did change the morphology of OTS monolayer and provided evidence for the conversion of hydrophilic characteristic.Photographs of Metallographic Microscope showed that OTS-SAM had an active effect on the deposition of SrTiO3 thin film.XRD and SEM indicated that the thin film was of pure cubic phase SrTiO3 and composed of nanosized grains with a size in the range of 100-500 nm.The formation mechanism of the SrTiO3 film was proposed.