通过数学变换将一类含有时滞反馈机制的ENSO充电振子模型转换成时滞Van der PolDuffing方程,并以此为基础来研究该ENSO系统的零解稳定性、Hopf分岔和极限环等动力学特征.用平均法分析了其零解的稳定性与时滞效应的强度,其和时间都有关系,讨论了时滞负反馈对ENSO振荡的影响并通过简单数值模拟验证理论分析的结果.
The nonlinear interactions between zonal flow and Rossby waves are studied by numerical simulations with focus on the effects of scalar nonlinearity. The numerical results show that the scalar nonlinearity has an appreciable influence on the Rossby dipole evolution and can reduce the threshold of the disturbance energy increase.
本文研究了一类太阳强迫的厄尔尼诺/南方涛动(ENSO)充电振子数理模型,通过数学变换将此ENSO振子方程组变换为有周期强迫项的van der Pol-Duffing方程,利用谐波平衡法定性分析得到此ENSO系统发生Hopf分岔的条件并做简单数值模拟,结果发现随着强迫作用增大,11年周期太阳循环强迫的ENSO系统经历准周期、倍频锁相到混沌的过程.
A class of recharge–discharge oscillator model for the El Ni?o/Southern Oscillation (ENSO) is considered. A stable limit cycle is obtained by transforming the ENSO model into the van der Pol-Duffing equation. We proved that there exists periodic oscillations in the ENSO recharge–discharge oscillator model.