With its long-term empirical clinical practice and increasing number of health benefits reported,Chinese Materia Medica(CMM)is gaining increasing global acceptance.Importantly,the identification of chemical constituents in vitro and exposed forms in vivo is a prerequisite for understanding how CMM formulae prevent and treat diseases.This review systematically summarizes the exciting and magical journey of CMM components from compound formulae to where they fight,the possible structural transformation of CMM components in vitro and in vivo,and their pharmacological contribution.When a decoction is prepared,significant chemical reactions are observed,including degradation and production of polymers and self-assembling supramolecules,leading to the construction of a component library with diverse decoction structures.After ingestion,compounds pass through the intestinal and blood-brain barriers and undergo a more wonderful journey involving the gut microbiota,microbial enzymes,and endogenous drug-metabolizing enzymes(mainly liver enzymes).At this stage,they are modified and assembled into novel and complex compounds,such as newly generated metabolites,conjugates,and self-assembling superamolecules.This review might provide a strategic orientation to explore the active compounds of CMM formulae in vivo.
Ning MengYun LyuXiaoyu ZhangXin ChaiKefeng LiYuefei Wang
Objective: As a classic prescription in traditional Chinese medicine, Xuefu Zhuyu Decoction(XFZYD) has been widely used in the clinical treatment of cardiovascular and cerebrovascular diseases. In order to unveil the potentially effective compounds, a rapid ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS) method was established to identify prototype compounds and their metabolites from XFZYD in rats’ serum.Methods: The serum from rats after intragastric administration of XFZYD aqueous extract was analyzed by UPLC-Q-TOF/MS method. The prototype compounds and their metabolites were identified by comparison with the reference standards and tentatively characterized by comprehensively analyzing the retention time, MS data, characteristic MS fragmentation pattern and retrieving literatures.Results: A total of 175 compounds(24 prototype compounds and 151 metabolites) were identified and tentatively characterized. The metabolic pathways of prototype compounds in vivo were also summarized, including glucuronidation, hydrolyzation, sulfation, demethylation, and hydroxylation, and so on.Conclusion: In this study, a UPLC-Q-TOF/MS technique was developed to analyze prototype compounds and their metabolites from XFZYD in serum, which would provide the evidence for further studying the effective compounds of XFZYD.
Xiaoyu ZhangZhenzuo JiangLei ZhangCheng XueXiafei FengXin ChaiYuefei Wang