A model is developed to calculate the distribution of first-order velocity field caused by the coupled bubbles in an ultrasound field. Using this model, numerical investigations of velocity field have been made when the two identical bubbles are driven well below resonance by an acoustic field with pressure amplitude exceeding cavitation threshold. Three representative kinestates of the coupled bubbles were chosen for analyzing the velocity distribution of surrounding liquid. The results show that the nonlinear oscillations of a bubble pair affect violently the radial velocity distribution of surrounding liquid, especially in the expanding phase. Symmetry of the tangential velocity distribution implies a possibility of attraction or repulsion of the bubble pairs.
Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound.
Bi2O2CO3是一种Bi类半导体催化剂,文章研究了它的超声催化性能。首先,采用水热法制备了微球型的Bi2O2CO3,利用X射线衍射(X-ray Diffraction,XRD)、扫描电子显微镜(Scanning Electron Microscope,SEM)、紫外-可见漫反射光谱对样品的晶体结构、微观形貌、光学特性进行了表征。然后,以罗丹明B(RhB)作为模型污染物,通过研究超声催化降解罗丹明B来评测Bi2O2CO3的超声催化性能。研究了催化剂的浓度(Ccatalytic)、初始罗丹明B染料的浓度(CRhB)和超声功率(P)等实验因素对超声催化降解效率的影响。得出在Ccatalytic=3g·L^-1,CRhB=10mg·L^-1和P=400W条件下降解罗丹明B的效率最高,其最高降解效率可以达到91.7%。