您的位置: 专家智库 > >

国家教育部博士点基金(20060335022)

作品数:3 被引量:7H指数:2
相关作者:刘妹琴更多>>
相关机构:浙江大学更多>>
发文基金:国家教育部博士点基金国家自然科学基金浙江省自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇自动化与计算...

主题

  • 1篇智能系统
  • 1篇神经网
  • 1篇神经网络
  • 1篇神经网络模型
  • 1篇时滞
  • 1篇时滞离散
  • 1篇输出反馈控制
  • 1篇网络模型
  • 1篇混沌神经网络
  • 1篇反馈控制
  • 1篇NEURAL...
  • 1篇OUTPUT...
  • 1篇T-S模糊模...
  • 1篇TIME_D...
  • 1篇TIME_D...
  • 1篇ASYMPT...
  • 1篇FUZZY_...
  • 1篇LMI
  • 1篇标准神经网络...
  • 1篇RAL

机构

  • 1篇浙江大学

作者

  • 1篇刘妹琴

传媒

  • 1篇中国科学(E...
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 1篇2008
  • 2篇2007
3 条 记 录,以下是 1-3
排序方式:
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback被引量:2
2008年
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Mei-qin LIUJian-hai ZHANG
时滞离散智能系统的动态输出反馈镇定控制器综合的统一方法
2007年
提出标准神经网络模型(SNNM)来描述包含神经网络或T-S模糊模型的时滞(或非时滞)离散智能系统.SNNM由离散线性动力学系统和有界静态非线性算子连接而成.利用SNNM的全局渐近稳定性分析的结果,分别设计线性或非线性动态输出反馈控制器,使得SNNM的闭环系统稳定.控制方程可以表示为线性矩阵不等式(LMI)形式,便于利用各种凸优化算法求解以获得控制规律.大部分基于神经网络(或模糊模型)的时滞(或非时滞)离散智能系统都可以转化为SNNM,以便采用统一的方法来综合这些智能系统的控制器.SNNM的3个应用例子表明:SNNM不仅使得大多数基于神经网络(或模糊模型)的离散智能系统镇定控制器的综合简单易行,而且为其他类型的非线性系统的控制器综合提供新的思路.
刘妹琴
关键词:智能系统输出反馈控制时滞混沌神经网络T-S模糊模型
Unified stabilizing controller synthesis approach for discrete-time intelligent systems with time delays by dynamic output feedback被引量:5
2007年
A novel model, termed the standard neural network model (SNNM), is advanced to describe some delayed (or non-delayed) discrete-time intelligent systems composed of neural networks and Takagi and Sugeno (T-S) fuzzy models. The SNNM is composed of a discrete-time linear dynamic system and a bounded static nonlinear operator. Based on the global asymptotic stability analysis of the SNNMs, linear and nonlinear dynamic output feedback controllers are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based (or fuzzy) discrete-time intelligent systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Three application examples show that the SNNMs not only make controller synthesis of neural-network-based (or fuzzy) discrete-time intelligent systems much easier, but also provide a new approach to the synthesis of the controllers for the other type of nonlinear systems.
LIU MeiQin
关键词:DISCRETE-TIME
共1页<1>
聚类工具0