The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.
Based on a 153-year (1948-2100) transient simulation of East Asian climate performed by a high resolution regional climate model (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario, the potential future changes in mean and extreme climates over China in association with a global warming of 2℃ with respect to pre-industrial times are assessed in this study. Results show that annual temperature rises over the whole of China, with a greater magnitude of around 0.6℃ compared to the global mean increase, at the time of a 2℃ global warming. Large-scale surface warming gets stronger towards the high latitudes and on the Qinghai-Tibetan Plateau, while it is similar in magnitude but somewhat different in spatial pattern between seasons. Annual precipitation increases by 5.2%, and seasonal precipitation increases by 4.2%-8.5% with respect to the 1986-2005 climatology. At the large scale, apart from in boreal winter when precipitation increases in northern China but decreases in southern China, annual and seasonal precipitation increases in western and southeastern China but decreases over the rest of the country. Nationwide extreme warm (cold) temperature events increase (decrease). With respect to the 1986-2005 climatology, the country-averaged annual extreme precipitation events R5d, SDII, R95T, and R10 increase by 5.1 mm, 0.28 mm d -1 , 6.6%, and 0.4 d respectively, and CDD decreases by 0.5 d. There is a large spatial variability in R10 and CDD changes.
Projection of future climate changes and their regional impact is critical for long-term planning at the national and regional levels aimed at adaptation and mitigation. This study assesses the future changes in precipitation in China and the associated atmospheric circulation patterns using the Couple Model Intercomparison Project 5 Phase (CMIP5) simulations under the RCP4.5 and RCP8.5 scenarios. The results consistently indicate that the annual precipitation in China is projected to significantly increase at the end of the 21st century compared to the present-day levels. The number of days and the intensity of medium rain, large rain and heavy rain are obviously increased, while the number of trace rain days is projected to decrease over the entire area of China. Further analysis indicates that the significant increase of annual precipitation in Northwest China is primarily due to the increase of light rain and the increases in North and Northeast China are primarily due to the increase of medium rain. In the region of southern China, the increases of large rain and heavy rain play an important role in the increase of annual precipitation, while light rain events play a negative role. Analysis of the changes in atmospheric circulation indicates that the East Asian summer monsoon circulation is projected to be considerably stronger, and the local atmospheric stratification is projected to be more unstable, all of which provide a background benefit for the increase of precipitation and extreme rainfall events in China under global warming scenarios.
利用WRF(Weather Research and Forecasting)模式,进行了我国东北地区冬季降雪的高分辨率数值模拟,评估了WRF模式对季节降雪的模拟能力,并探讨了模式水平分辨率和物理过程参数化方案对降雪模拟的影响.结果显示WRF模式可以合理地模拟冬季气温和降水的空间分布,模拟结果和观测吻合较好.该模式可以合理地模拟东北地区季节降雪的空间分布和时间演变,显示了该模式较强的模拟性能.水平分辨率和物理过程参数化方案对降雪模拟有重要影响,高分辨率模拟结果更接近观测;相对于积云对流参数化方案,模式对陆面过程和微物理过程参数化方案更加敏感.
In July 2013, the Jianghuai–Jiangnan region of China experienced a persistent extreme high temperature,and the surface air temperature(SAT) over many areas of the region set a new record, which had a profound impact on people's lives. This study explored the possible mechanism for this extreme climate phenomenon. The results show that the sea surface temperature(SST) over the midNorth Atlantic in July 2013 was the warmest observed over the past 160 years. The strong anomaly of the SST connects to the East Asian upper level westerly and western Pacific subtropical high(WPSH) via the teleconnection wave train and further contributes to the SAT variability over the Jianghuai–Jiangnan region; this connection could be one possible mechanism for the formation of the recordbreaking extreme hot event(EHE) over the Jianghuai–Jiangnan region in July 2013. In addition, for the EHE over the Jianghuai–Jiangnan region, the role of the WPSH was generally emphasised. This study found that the variability of the upper level westerly over the Jianghuai–Jiangnan region is also an important climate factor impacting the SAT of the region. In particular, the record-breaking weakness of the upper level westerly corresponded to the record-breaking SAT over the Jianghuai–Jiangnan region in July 2013. These results indicate that the role of the upper level westerly should be emphasised in addition to the WPSH, according to both the variability in the summer air temperature and the EHE over the Jianghuai–Jiangnan region.