The transmitting light in GaN-based LED with 30 nm thickness metal film grating is investigated. We proposed a basic grating structure model to enhance light intensity in GaN material, which was simpler and cheaper. We calculated and analyzed the structure with different parameters, and studied the numerical simulation results of Ag-films/Al-films/Au-films. With a simple A1 or Ag basic grating structure, the 7.4-7.6 times intensity of 550 nm light can be obtained easily, and the enhancement efficiency is better than others.
A population inversion study of GaAs/AlxGa1-xAs three-quantum-well quantum cascade structures is presented. We derive the population inversion condition (PIC) of the active region (AR) and discuss the PICs on different structures by changing structural parameters such as the widths of quantum wells or barriers in the AR. For some instances, the PIC can be simplified and is proportional to the spontaneous emission lifetime between the second and the first excited states, whereas some other instances imply that the PIC is proportional to the state lifetime of the second excited state.
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.