A method of measuring the thermoelectric power of nano-heterostructures based on four-probe scanning tunneling microscopy is presented. The process is composed of the in-situ fabrication of a tungsten-indium tip, the precise control of the tip-sample contact and the identification of thermoelectric potential. When the temperature of the substrate is elevated, while that of the tip is kept at room temperature, a thermoelectric potential occurs and can be detected by a current voltage measurement. As an example of its application, the method is demonstrated to be effective to measure the thermoelectric power in several systems. A Seebeck coefficient of tens of IxV/K is obtained in graphene epitaxially grown on Ru (0001) substrate and the thermoelectric potential polarity of this system is found to be the reverse of that of bare Ru (0001) substrate.
We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing temperature. In 700 ℃ and 800 ℃annealings, the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate, which is in accordance with the etching growth mode. In 900 ℃ annealing, the islands are much larger and of lower quality, which represents the early stage of Smoluchowski ripening. A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moire pattern. Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.