Jasmonates (JAs) are a new class of plant hormone that regulate expression of diverse genes to mediate various plant responses. The Arabidopsis F-box protein COI1 is required for plant defense and male fertility in JA signal pathway. To further investigate the regulatory role of COI1 in male fertility, we compared the proteomics profiles of Arabidopsis wild type (WT) flowers with coi1-1 mutant male-sterile flowers using two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desoption/ionization-time-of-flight mass spectrometry. Sixteen proteins with potential function in specific biological processes such as metabolism processes and defense/stress responses were differentially expressed in WT and coi1-1 mutant flowers. Verification on a phi class glutathione transferase AtGSTF9, one out of these 16 identified proteins, revealed that the expression of AtGSTF9 was severely downregulated in flowers of coi1-1 mutant compared with that of WT. Further function analyses of these genes would provide new insights into the molecular basis of COil-regulated male fertility.
The transcription factor WRKY70 was previously reported to be a common component in salicylic acid (SA) and jasmonate (JA) mediated signal pathways in Arabidopsis. Here, we present that the inactivation of the WRKY70 gene in wrky70-1 mutant does not alter the responses of both JA and SA, and that wrky70 mutation is unable to restore the coil mutant in JA responses. However, overexpression of WRKY70 reduces JA responses such as expression of JA-induced genes and JA-inhibitory root growth, and activates expression of SA-inducible PR1. These data indicate that the WRKY70 is important but not indispensable for JA and SA signaling, and that other regulators may display the redundant role with WRKY70 in modulation of JA and SA responses in Arabidopsis. Furthermore, we showed that JA inhibits expression of WRKY70 and PR1 by both COi1-dependent and COi1-independent pathways.