It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
By using the discrete variational method,we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework,and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm.Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework.
The geometric formulation of motion of the first-order linear homogenous scleronomous nonholonomic system subjected to active forces is studied with the non- holonomic mapping theory. The quasi-Newton law, the quasi-momentum theorem, and the second kind Lagrange equation of dynamical systems are obtained in the Riemann- Cartan configuration spaces. By the nonholonomic mapping, a Euclidean configuration space or a Riemann configuration space of a dynamical system can be mapped into a Riemann-Cartan configuration space with torsion. The differential equations of motion of the dynamical system can be obtained in its Riemann-Cartan configuration space by the quasi-Newton law or the quasi-momentum theorem. For a constrained system~ the differential equations of motion in its Riemann-Cartan configuration space may be sim- pler than the equations in its Euclidean configuration space or its Riemann configuration space. Therefore, the nonholonomic mapping theory can solve some constrained prob- lems, which are difficult to be solved by the traditional analytical mechanics method. Three examples are given to illustrate the effectiveness of the method.