The topic of self-assembly of cylinder-forming diblock copolymers (DBCPs) under spherical shell confinement in different surface fields is explored using real-space self-consistent field theory calculations (SCFT). Using this approach we observed various microstructures of cylinder-forming DBCPs at different confinement dimensions and surface fields. From detailed searching for the microdomain morphologies, an obvious conclusion is that the interactions between the confinement surface and the polymers have a great effect on the self-assembly. Most of the microstructures are unique and not reported in bulk or under planar and cylindrical confinements.