您的位置: 专家智库 > >

国家自然科学基金(A0324614)

作品数:5 被引量:4H指数:1
相关作者:侯成军更多>>
相关机构:曲阜师范大学更多>>
发文基金:国家自然科学基金山东省自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 5篇理学

主题

  • 2篇N-S
  • 2篇KA
  • 2篇ALGEBR...
  • 1篇代数
  • 1篇上同调
  • 1篇上同调群
  • 1篇套代数
  • 1篇同调
  • 1篇同调群
  • 1篇PRESSU...
  • 1篇SUBALG...
  • 1篇ALGEBR...
  • 1篇C^*
  • 1篇COHOMO...
  • 1篇DUAL
  • 1篇FACTOR
  • 1篇INJECT...
  • 1篇LOCAL
  • 1篇MAXIMA...
  • 1篇W

机构

  • 1篇曲阜师范大学

作者

  • 1篇侯成军

传媒

  • 3篇Scienc...
  • 1篇Acta M...
  • 1篇中国科学:数...

年份

  • 2篇2010
  • 2篇2008
  • 1篇2007
5 条 记 录,以下是 1-5
排序方式:
On maximal injective subalgebras in a wΓ factor
2008年
Let $ \mathcal{L} $ (F ?) × α ? be the crossed product von Neumann algebra of the free group factor $ \mathcal{L} $ (F ?), associated with the left regular representation λ of the free group F ? with the set {u r : r ∈ ?} of generators, by an automorphism α defined by α(λ(u r )) = exp(2πri)λ(u r ), where ? is the rational number set. We show that $ \mathcal{L} $ (F ?) × α ? is a wΓ factor, and for each r ∈ ?, the von Neumann subalgebra $ \mathcal{A}_r $ generated in $ \mathcal{L} $ (F ?) × α ? by λ(u r ) and υ is maximal injective, where υ is the unitary implementing the automorphism α. In particular, $ \mathcal{L} $ (F ?) × α ? is a wΓ factor with a maximal abelian selfadjoint subalgebra $ \mathcal{A}_0 $ which cannot be contained in any hyperfinite type II1 subfactor of $ \mathcal{L} $ (F ?) × α ?. This gives a counterexample of Kadison’s problem in the case of wΓ factor.
HOU ChengJun School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China
一类Kadison-Singer代数的上同调被引量:1
2010年
设C为无限维可分Hilbert空间H上的套N和秩一投影P_ξ所生成的完备格,其中P_ξ表示H到非零向量ξ生成一维子空间上的正交投影.假设ξ为由N生成的von Neumann代数N″的分离向量,本文证明L是个Kadison-Singer格,从而相应的不变子空间格代数Alg(L)是个Kadison-Singer代数.此外,本文刻画Alg(L)的中心和模交换子,证明Alg(L)到其自身内的每个有界导子都是内的,以及Alg(L)的系数在B(H)内的任意n阶上同调群H^n(Alg(L),B(H))都是平凡的,n≥1.
侯成军
关键词:套代数上同调群
The Pressure in Operator Algebras
2008年
We introduce two notions of the pressure in operator algebras, one is the pressure Pα(π, T) for an automorphism α of a unital exact C^*-algebra A at a self-adjoint element T in A with respect to a faithful unital *-representation π the other is the pressure Pτ,α(T) for an automorphism α of a hyperfinite von Neumann algebra M at a self-adjoint element T in M with respect to a faithful normal α-invariant state τ. We give some properties of the pressure, show that it is a conjugate invaxiant, and also prove that the pressure of the implementing inner automorphism of a crossed product A×α Z at a self-adjoint operator T in A equals that of α at T.
Cheng Jun HOU
关键词:ENTROPYPRESSURE
Local 3-cocycles of von Neumann algebras
2007年
We show that every local 3-cocycle of a von Neumann algebra $\mathcal{R}$ into an arbitrary unital dual $\mathcal{R}$ -bimodule $\mathcal{S}$ is a 3-cocycle.
Cheng-jun HOU~(1+) Ben-yin FU~2 1 School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China
Cohomology of a class of Kadison-Singer algebras被引量:3
2010年
Let L be the complete lattice generated by a nest N on an infinite-dimensional separable Hilbert space H and a rank one projection P ξ given by a vector ξ in H. Assume that ξ is a separating vector for N , the core of the nest algebra Alg(N ). We show that L is a Kadison-Singer lattice, and hence the corresponding algebra Alg(L) is a Kadison-Singer algebra. We also describe the center of Alg(L) and its commutator modulo itself, and show that every bounded derivation from Alg(L) into itself is inner, and all n-th bounded cohomology groups H n (Alg(L), B(H)) of Alg(L) with coefficients in B(H) are trivial for all n≥1.
HOU ChengJun Institute of Operations Research, Qufu Normal University, Rizhao 276826, China
关键词:ALGEBRANESTALGEBRACOHOMOLOGY
共1页<1>
聚类工具0