Novel blue light-emitting poly(aryl ether)s comprising of bipolar oligofluorene pendants as chromophores have been designed and synthesized, in which pyrimidine and arylamine moieties are utilized as the electron acceptor and electron donor, respectively. Through varying n bridge length from monofluorene to bifluorene and end-cappers from hydrogen to carbazole and diphenylamine, the emission color of the resulting polymers covers from deep blue to greenish blue, and their HOMO and LUMO levels can be modulated to facilitate charge injection to improve the device performance. Polymer light- emitting diodes (PLEDs) are fabricated with the device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) (50 nm)/polymer (80 nm)/Ca (10 nm)/Al (200 nm). Among these polymers, P2Cz5F-Py with bifluorene bridge and carbazole end-capper shows excellent trade-off between the efficiency and emission wavelength, having a peak luminous efficiency as high as 1.26 cd/A and Commission Internationale de L'Eclairage (CIE) coordinates of (0.17,0.17).
In this paper, a new D-A copolymer, PFDBCPDT, which consists of benzo-2,1,3-thiadiazole as acceptor units and cyclopentadithiophene and fluorene as donor units, was synthesized. The thermal, electrochemical, photophysical and photovoltaic properties of PFDBCPDT were studied. PFDBCPDT showed a low optical band gap of 1.84 eV, and relatively low HOMO level of-5.69 eV. The best device performance was obtained by PFDBCPDT/PC61BM (1:3) with 0.5 vol% DIO. The device exhibited a power conversion efficiency of 3.06%, with a relatively high open circuit voltage of 0.87 eV.