In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.
Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their resource properties provided by a grid monitoring and discovery system, such as available bandwidth, free CPU and idle memory, as well as the number of current connections and online time. when a new node joins the network and the super-peers are all saturated, it should select a new super-peer from the new node or joined nodes with the highest capacity. By theoretical analyses and simulation experiments, it is shown that super-peers selected by capacity can achieve higher query success rates and shorten the average hop count when compared with super-peers selected randomly, and they can also balance the network load when all super-peers are saturated. When the number of total nodes changes, the conclusion is still valid, which explains that the algorithm SSABC is feasible and stable.