张慧荣
- 作品数:2 被引量:0H指数:0
- 供职机构:中国科学院软件研究所更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:理学更多>>
- 不等距网格上求解ODE特征值问题若干高精度格式的计算与分析
- 2014年
- 本文针对不等距网格,从Raylei曲商(Raylei曲quotient)角度出发,构造了若干求解ODE特征值问题的高阶格式,并进行误差分析.文中高阶格式的构造是基于线性有限元及其对应的差分格式进行的.单纯的线性有限元及其对应的差分格式求解PDE特征值问题都只有二阶精度,我们利用质量集中和加权组合的思想通过将二者结合得到四阶精度的算法.本文从理论和实验的角度构造高阶格式并进行了相应的误差分析.通过在五种网格上计算四阶精度格式的误差阶系数,将四阶格式加权组合的新格式甚至可以达到六阶精度.最后用数值实验验证了构造的高阶格式的误差阶.同时,本文构造的两种四阶格式相对于传统的线性有限元方法,在同等量级误差的要求下,需要的网格数有量级的减少.
- 张慧荣曹建文孙家昶
- 关键词:特征值问题
- 针对对称对角占优线性系统的组合预条件算法
- 2015年
- 本文针对对角占优的对称矩阵(SDD)构成的稀疏线性系统,采用组合预处理技术从谱逼近角度分析并实现一种新型的预条件子.其与ILU类预条件子和AMG类预条件子相比,具有更高的并行可扩展性,满足通量守恒或者等效电阻原理.SDD矩阵通过数学上的规约手段,可以约化为标准的Laplace矩阵,其对应于图论中的无向图.基于此我们首先利用Ofer等提出的算法建立具有low stretch度量的一类生成树.然后采用树分解算法将生成树分解为子树,通过对子树选择合适的连接边进行加边修正得到相应的增广子图.最后将增广子图对应的Laplace矩阵转化为SDD矩阵,该矩阵即为原系数矩阵的预条件子.数值实验表明,与不完全Cholesky分解预条件子相比,该类预条件子更高效,其收敛速度对问题边界类型以及矩阵排序算法不敏感,并且其效率对矩阵规模增长不太敏感.
- 张慧荣曹建文