胡燕
- 作品数:1 被引量:6H指数:1
- 供职机构:北京邮电大学更多>>
- 发文基金:国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于K-Means和时间匹配的位置预测模型被引量:6
- 2017年
- 随着移动服务的发展,越来越多的移动端服务基于对象的位置进行推送和推荐,因此位置预测技术显得越来越重要.由于对象位置信息存在采集不连续或对象行为不规律等因素,导致位置预测成为一项非常有挑战的工作.为了提高位置预测的准确性,提出一种基于K-Means算法和时间匹配的位置预测模型.该模型使用K-Means算法对历史位置点进行聚类,划分多个对象运动区域,针对对象运动区域进行预测.按照对象的作息时间将一天时间划分为多个时间段,运用笔者提出的轨迹建模算法和轨迹更新算法形成用户运动轨迹,形成对象运动轨迹,再使用时间匹配原则进行位置预测.笔者最后利用真实的数据实现该模型,实验证明:未使用该模型的位置预测准确率为39.7%;使用该模型后算法和时间匹配的位置预测模型预测准确率达到60.3%,准确率提高了20%左右.
- 胡燕朱晓瑛马刚
- 关键词:K-MEANS算法聚类