为了获得效价高、特异性好的甲硝唑(metronidazole,MNZ)的小鼠多抗血清,采用琥珀酸酐法将甲硝唑上的羟基改造成羧基,然后通过碳二亚胺法把改造后的甲硝唑分别与牛血清白蛋白(albumin from bovine serum,BSA)和卵清蛋白(ovalbumin,OVA)进行偶联,制备免疫原MNZ-BSA和包被原MNZ-OVA。经紫外扫描和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳初步鉴定偶联成功。将免疫原MNZ-BSA分成20g/只和50g/只2个剂量分别免疫8周龄的BALB/c小鼠。获得了效价高、特异性好的小鼠多抗血清,效价均达到1:104以上,IC50值为61.39ng/mL。
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。
采用近红外高光谱成像技术(900~1700 nm)结合化学计量学算法快速定量预测牛肉糜中大豆分离蛋白掺入量。首先按照2%~30%(w/w),掺入间隔1%的浓度梯度,制备不同大豆分离蛋白掺入浓度的牛肉糜样品,然后采集样品的高光谱图像并提取光谱数据,最后运用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立预测模型。为了减少模型的高维共线性问题,采用回归系数法(Regression coefficients,RC)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长,优化全波段预测模型。结果显示基于RC法筛选的22个最优波长构建的RC-PLSR模型和RC-MLR模型预测效果优于基于SPA法筛选的21个最优波长构建的SPA-PLSR模型和SPA-MLR模型。其中,RC-PLSR模型预测效果最接近全波段PLSR模型,rP为0.95,RMSEP为2.73%,RPD为3.32。试验结果表明近红外高光谱成像技术结合化学计量学方法可快速预测牛肉糜中大豆分离蛋白的掺入量。