郭小卫
- 作品数:9 被引量:27H指数:3
- 供职机构:北京东方泰坦科技股份有限公司更多>>
- 发文基金:中国航空科学基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术天文地球电子电信更多>>
- 基于小波域边缘方向特征的SAR图象噪声抑制方法被引量:11
- 2003年
- 给出了一种新的基于小波变换的合成孔径雷达 (SAR)图象斑点噪声抑制方法 .利用每一级小波分解得到的小波系数子带 HL和 L H,以及对原图进行水平方向旋转正负 4 5°扫描后得到的另外两个正交方向的小波系数子带 rc HL和 ra HL ,可以判断出对应点边缘方向性的强弱 ,通过设定方向性阈值 ,确定该点是否位于边缘上 ,进而对没有位于边缘的点进行平滑 ,达到保留图象边缘的同时 ,抑制斑点噪声的目的 .为解决对某些振荡型边缘的检测问题 ,还结合阈值法 ,对该方法做了改进 .实验表明 ,与小波域的硬阈值或软阈值去噪方法相比 ,此方法在有效地抑制斑点噪声的同时 ,更好地保留了 SAR图象中的边缘和纹理信息 .
- 郭小卫田铮
- 关键词:小波变换合成孔径雷达噪声抑制图象边缘SAR图象
- 基于多尺度Markov模型的SAR图像上下文融合分割方法
- 2006年
- 在多尺度Markov模型的基础上,提出了一种新的用于SAR图像无监督分割的上下文融合分割方法。该方法充分考虑了SAR图像分布的统计特性,用基于混合Rayleigh分布的多尺度Markov模型对待分割图像建模,并直接根据待分割图像用迭代条件估计算法来训练模型的参数。然后以上下文向量的形式提出了四种不同的上下文模型,并用这四种上下文模型分别对待分割图像的多尺度图像信息进行自上而下的融合,最终得到四种不同的分割结果。实验表明,该方法进一步提高了SAR图像分割结果的精度。
- 熊毅田铮郭小卫
- 关键词:SAR图像
- 小波域隐Markov交叠树模型及块效应评价被引量:1
- 2005年
- 本文针对小波域隐Markov树模型(hidden Markov tree model,HMT)的块效应问题,分析了块效应的产生机理,给出了以图像去噪为基础的块效应评价准则,并提出小波域隐Markov交叠树模型(hidden Markov overlappingtree model,HMOLT)和基于该模型的图像去噪算法。该模型通过对每个节点的数据扩展,使每个节点包括相邻的3个(1维)或9个(2维)小波系数,实现同一尺度相邻节点数据的交叠,有效地减轻HMT因树状结构而产生的块效应。实验表明,本文给出的模型和去噪算法,无论是在均方误差(MSE)、块效应指标,还是在主观视觉方面,都优于HMT和基于HMT的去噪算法。
- 郭小卫田铮林伟
- 关键词:块效应图像去噪模式识别
- 基于多尺度谱特征的SAR图像分割
- 2004年
- 该文结合多尺度技术与谱分析方法,提出了基于多尺度谱特征的图像分割方法,并将之用于SAR图像分割。该方法在多尺度框架内,提取每个像素在不同尺度下的局部谱特征(AR模型参数),并组合各尺度的谱特征为一多尺度谱特征向量,作为该像素的分类特征,利用一基于二元假设检验的分类器对该像素分类。与单一尺度的谱特征分割方法相比,多尺度谱特征分割保留了算法简单的优点的同时,在小窗口情况下,仍能给出较平滑的分割结果,从而减小了计算复杂度。
- 郭小卫田铮
- 关键词:图像分割多尺度谱特征
- 基于Markov四叉树模型的无监督图像分割被引量:3
- 2005年
- 本文提出了一种基于分布特征的多尺度无监督图像分割方法。通过对多尺度图像数据在每个尺度上进行Gauss子集聚类,并将每个像素的邻域内的Gauss子集类别标记作为特证向量,利用多尺度Markov模型进行二次聚类,从而实现无监督图像分割。与其它基于多尺度Markov模型的无监督分割方法和传统动态聚类方法相比,该方法既无需假定每类的分布形式,又能较好地反映数据的概率结构。对合成图像与SAR图像的实验结果表明,该方法的分割精度接近于有监督的H-MPM和H-SMAP方法。
- 郭小卫田铮林伟
- 关键词:图像分割树模型四叉树MARKOV模型合成图像
- 多尺度Markov模型的可适应图像分割方法被引量:7
- 2005年
- 本文在图像分割的TSMAP(trainablesequentialmaximumaposterior)方法基础上,提出基于多尺度Markov模型的可适应ATSMAP(adaptiveTSMAP)图像分割方法.在给定训练图像及其基本真实分割(groundtruthsegmentation,GTS)的基础上,通过直接对原始图像的GTS进行小波变换产生粗尺度上的GTS,进而估计出图像数据的分布参数和Markov四叉树模型参数;上下文模型参数根据上下文的低维特征(类别数量特征)而非上下文本身来估计.该方法具有上下文模型参数估计计算量小,Markov四叉树模型参数可针对特定的待分割图像重新优化等优点(模型适应过程),解决了TSMAP方法易导致过学习的问题,在待分割图像与训练图像的统计特性不匹配的情况下,仍能给出较好的分割结果.对合成图像与SAR图像的实验结果表明,这种方法的分割精度高于TSMAP和其它几种基于多尺度Markov模型的图像分割方法.
- 郭小卫田铮林伟熊毅
- 关键词:SEQUENTIALMAXIMUM图像分割SAR图像
- 小波域隐Markov树模型的图像去噪快速算法被引量:4
- 2004年
- 小波域隐Markov树模型(HiddenMarkovTreeModel,简称HMT)能充分表现小波系数的统计特征,但模型训练算法计算量大。文中以图像去噪为应用背景,提出了基于HMT粗分类的多树训练算法。该算法通过对不同类型的纹理建立不同的HMT,对小波系数进行粗分类,在此基础上,不同类别的小波系数被分别建模,并将粗分类HMT的参数作为最终模型训练的初始化参数,从而提高了模型的精度,同时减小了训练算法的计算量。对于含复杂场景或纹理的图像,提出了基于方差粗分类的训练算法,也能有效地提高模型精度。对自然图像和SAR图像的去噪实验表明,采用粗分类训练算法的HMT去噪模型的去噪效果在客观指标上优于现有的HMT去噪模型。
- 郭小卫田铮刘保利
- 关键词:小波变换图像去噪粗分类
- 一种多尺度无监督遥感图像分割方法被引量:1
- 2006年
- 提出了一种多尺度无监督遥感图像分割方法。通过对多尺度图像数据在每个尺度上进行Gauss子集聚类,并将每个像素的邻域内的Gauss子集类别标记作为特征向量,利用Markov四叉树模型进行二次聚类,从而实现无监督图像分割。与其他基于多尺度Markov模型的无监督分割方法和传统动态聚类方法相比,该方法既无需假定每类的分布形式,又能较好地反映数据的概率结构。合成图像与SAR图像的实验结果表明,该方法的分割精度接近于有监督的H-MPM和H-SMAP方法。
- 郭小卫官小平
- 关键词:多尺度POSTERIOR无监督分割
- 基于多特征的SAR图像多尺度无监督分割被引量:1
- 2006年
- 提出一种基于多特征的SAR图像多尺度无监督分割方法。该方法采用隐Markov树(hidden Markov tree,HMT)模型对SAR图像的灰度数据与标准差数据分别建模并分割,由两个分割结果提取SAR图像的结构性信息,并根据结构性信息,对灰度分割的后验概率进行平滑,最终的分割结果表明,该方法在很少损失结构性信息的基础上,能得到更光滑的分割结果。
- 郭小卫官小平
- 关键词:SAR图像RAYLEIGH分布CONDITIONAL