程军圣 作品数:270 被引量:3,421 H指数:37 供职机构: 湖南大学机械与运载工程学院 更多>> 发文基金: 国家自然科学基金 湖南省自然科学基金 中央高校基本科研业务费专项资金 更多>> 相关领域: 机械工程 电子电信 自动化与计算机技术 理学 更多>>
EMD方法在转子局部碰摩故障诊断中的应用 被引量:60 2006年 针对转子系统局部碰摩故障振动信号的特征,将经验模态分解方法(EmpiricalModeDecomposition,简称EMD)应用于转子局部碰摩故障诊断中。采用EMD方法对转子振动信号进行分解,实现碰摩、背景和噪声信号分离,从而提取转子系统局部碰摩振动信号的故障特征。试验分析结果表明,对具有局部碰摩故障的转子振动信号进行EMD分解得到的基本模式分量(IMF)具有明显的调幅特性,而其他状态下的转子振动信号经过EMD分解后得到的IMF分量没有明显的调幅特性。因此,EMD方法可以有效地应用于转子系统局部碰摩故障诊断中。 程军圣 于德介 杨宇关键词:转子 故障特征 改进的EEMD方法及其在滚动轴承故障诊断中的应用 被引量:40 2018年 针对集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法只考虑了噪声的幅值对分解结果的影响,而且添加的白噪声不能完全中和的问题,通过分析噪声的最大频率对分解结果的影响,提出一种改进的EEMD方法。将总体平均次数固定为2,然后对信号添加最大频率和幅值不同的噪声进行分解,遍历之后由分解结果的正交性系数判断分解效果,将正交性系数最小的作为最终分解结果,同时结合补充的EEMD(Complementary EEMD,CEEMD)方法降低残余噪声对分解结果的影响。通过仿真信号和实测信号分析,结果表明改进方法在抑制模态混淆和故障诊断方面较原始方法有一定优势。 程军圣 王健 桂林关键词:故障诊断 一种基于Hilbert-Huang变换和AR模型的滚动轴承故障诊断方法 被引量:10 2004年 提出了一种基于Hilbert-Huang变换和AR模型的滚动轴承故障诊断方法.采用Hilbert-Huang变换将滚动轴承振动信号分解成若干个平稳的IMF(IntrinsicModeFunction)分量,求出每一个IMF分量的瞬时幅值和瞬时频率,然后对每一个IMF分量的瞬时幅值和瞬时频率序列建立AR模型,以模型主要的自回归参数和残差的方差作为特征向量建立Mahalanobis距离判别函数,进一步判断滚动轴承的工作状态和故障类型.实验结果分析表明,本文方法能有效地应用于滚动轴承的故障诊断. 程军圣 于德介 杨宇关键词:AR模型 特征向量 局部均值分解方法及其在齿轮故障诊断中的应用 被引量:96 2009年 研究了一种新的自适应时频分析方法——局部均值分解LMD(Local mean decomposition)方法,并针对齿轮故障振动信号的调制特征,提出了基于LMD的齿轮故障诊断方法。LMD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义的PF(Product function)分量之和,从而获得原始信号完整的时频分布,其本质上是将多分量的信号自适应地分解为若干个单分量的调幅-调频信号之和,非常适合于处理多分量的调幅-调频信号。在介绍LMD方法的基础上,对LMD和EMD(Empirical mode decomposition)方法进行了对比,结果表明了LMD方法的优越性,同时将LMD方法应用于齿轮故障诊断,对实际的齿轮故障振动信号进行了分析,结果表明LMD方法可以有效地应用于齿轮故障诊断。 程军圣 杨宇 于德介关键词:故障诊断 局部均值分解 时频分布 调制 齿轮 基于自适应波形匹配延拓的局部均值分解端点效应处理方法 被引量:44 2010年 局部均值分解(LMD)能将复杂的信号自适应地分解成若干个具有物理意义的单分量信号,但是在其实现过程中会产生端点效应,使结果失真。在详细分析了LMD产生端点效应的原因后,提出了自适应波形匹配延拓法来解决端点效应。该方法充分考虑了信号的内在规律与边缘处的变化趋势,使延拓更加合理,且具自适应性。对仿真信号与实际工程信号进行了分析,结果表明该方法能有效抑制LMD分解的端点效应。 张亢 程军圣 杨宇关键词:局部均值分解 端点效应 自适应 一种新的时频分析方法——局部特征尺度分解 被引量:24 2012年 在定义瞬时频率具有物理意义的内禀尺度分量(Intrinsic scale component,ISC)的基础上,提出了一种新的自适应时频分析方法——局部特征尺度分解(Local charac-teristic-scale decomposition,LCD),该方法可以自适应地将一个复杂信号分解为若干个ISC分量之和.分别采用LCD方法和经验模态分解(Empirical mode decomposition,EMD)方法对仿真信号进行了分析,分析结果表明:2种方法都可以有效地对信号进行分解,但LCD方法在计算效率和抑制端点效应等方面要优于EMD方法.此外,还将LCD方法应用于滚动轴承故障诊断,实验信号的分析结果进一步表明了该方法的有效性. 杨宇 曾鸣 程军圣关键词:故障诊断 局部特征尺度分解 滚动轴承 经验模态分解(EMD)在滚动轴承故障诊断中的应用 被引量:41 2003年 针对滚动轴承故障振动信号的非平稳特征,提出了基于经验模态分解(Empiri calModeDecomposition,简称EMD)和神经网络的滚动轴承故障诊断方法.首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(IntrinsicModefunction,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量,并从中提取时域特征指标———峭度或裕度因子作为神经网络的输入参数来识别滚动轴承的故障模式.对滚动轴承的内圈、外圈故障信号的分析结果表明,以EMD为预处理器提取时域特征参数的神经网络诊断方法比直接从原信号中提取时域特征参数的诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类别. 杨宇 于德介 程军圣 丁戈关键词:滚动轴承 EMD 神经网络 故障诊断 基于EMD和奇异值分解技术的齿轮故障诊断方法 提出了基于EMD和奇异值分解技术的齿轮故障诊断方法.采用EMD方法将齿轮振动信号分解成若干个基本模式分量之和,并形成初始特征向量矩阵.然后对初始特征向量矩阵进行奇异值分解得到矩阵的奇异值,将其作为齿轮振动信号的状态特征向... 程军圣 于德介 杨宇关键词:EMD 齿轮 奇异值分解 特征向量 振动信号 文献传递 WVPMCD及其在滚动轴承故障诊断中的应用 被引量:3 2014年 多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)分类方法是建立在回归模型为同方差性基础上的,而当模型出现异方差性时,会导致预测精度降低.基于此,本文提出了WVPMCD(WLS-Variable predictive model based class discriminate,简称WVPMCD)方法,即用加权最小二乘法(WLS)代替原方法中的最小二乘法(OLS)进行参数估计,消除异方差性,从而提高了模式识别的精度.采用局部特征尺度分解(Local characteristic-scale decomposition,简称LCD)方法对滚动轴承振动信号进行分解,提取分量矩阵的奇异值组成故障特征向量作为WVPMCD的输入,并对正常状态、滚动体故障、内圈故障和外圈故障4种不同工作状态和故障类型下的滚动轴承振动信号进行分析,结果表明,在模型存在异方差性时,WVPMCD比原VPMCD具有更好的分类效果和识别率. 杨宇 李永国 程军圣关键词:局部特征尺度分解 加权最小二乘 滚动轴承 故障诊断 PMA-ASTFA及其在齿轮裂纹定量诊断中的应用 被引量:2 2017年 目前对齿轮裂纹的诊断研究多采用定性诊断,而工程实际中往往更关注定量诊断。由于齿轮裂纹信号往往表现出非线性非平稳特征,处理这类信号通常采用时频分析。自适应最稀疏时频分析(Adaptive and Sparsest TimeFrequency Analysis,简称ASTFA)是一种新的时频分析方法,相比于经验模态分解(Empirical Mode Decomposition,简称EMD)方法,ASTFA方法能更好地抑制端点效应和模态混淆,但ASTFA方法也存在分解得到的分量排列不规律的缺陷,从而给特征提取时分量的选择带来困难。针对这一问题,提出了一种改进ASTFA算法,即基于主模态分析(Principle Mode Analysis,简称PMA)的自适应最稀疏时频分析(PMA-ASTFA)方法,该方法可以根据所选择的故障特征参数(一个或多个)对内禀模态函数(Intrinsic Mode Function,简称IMF)分量进行排序。根据齿轮故障实验台建立齿轮动力学模型,选择对齿轮裂纹敏感的故障特征参数,再把PMA-ASTFA方法用于实测的齿轮裂纹故障信号处理。实验信号的分析结果表明,提出的方法可以有效地实现齿轮裂纹故障的定量诊断。 杨宇 欧龙辉 吴家腾 程军圣关键词:故障诊断 齿轮裂纹