您的位置: 专家智库 > >

朱冬娟

作品数:2 被引量:0H指数:0
供职机构:东南大学更多>>
相关领域:医药卫生自动化与计算机技术更多>>

文献类型

  • 1篇期刊文章
  • 1篇学位论文

领域

  • 2篇医药卫生
  • 1篇自动化与计算...

主题

  • 1篇因果
  • 1篇因果关系
  • 1篇因果关系分析
  • 1篇网络
  • 1篇网络分析
  • 1篇默认网络
  • 1篇静息
  • 1篇静息态
  • 1篇静息态功能磁...
  • 1篇功能磁共振
  • 1篇核独立成分分...
  • 1篇NUMERI...
  • 1篇BASED_...
  • 1篇FUNCTI...
  • 1篇磁共振
  • 1篇RESTIN...
  • 1篇FMRI

机构

  • 2篇东南大学

作者

  • 2篇朱冬娟
  • 1篇阮宗才
  • 1篇王训恒

传媒

  • 1篇Journa...

年份

  • 1篇2011
  • 1篇2010
2 条 记 录,以下是 1-2
排序方式:
基于核独立成分分析的脑静息功能网络分析
大量基于功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)的研究表明,人脑在静息状态下存在多个神经网络,这些网络被称之为静息网络。其中默认网络(Default Mode...
朱冬娟
关键词:静息态功能磁共振默认网络核独立成分分析因果关系分析
Numerical study of resting-state fMRI based on kernel ICA
2010年
In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.
朱冬娟王训恒阮宗才
关键词:RESTING-STATE
共1页<1>
聚类工具0