A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adaptive geometry. Plane wave shot migration is another method to perform exact wave equation prestack imaging with high computational efficiency and without the migration aperture problem. Moreover, wavefield energy can be compensated at the target zone by controlled illumination. In this paper, plane wave shot PSDM was implemented by the control of the plane down-going wavefield and selection of number and range of the raypaths in order to optimize the imaging effect. In addition, controlled illumination techniques are applied to enhance the imaging precision of interesting areas at different depths. Numerical calculation indicates that plane wave shot imaging is a rapid and efficient method with less computational cost and easy parallel computation compared to the single-square-root operator imaging for common shot gathers and double- square-root operator imaging for common midpoint gathers.