The recent developments of electron tomography(ET) based on transmission electron microscopy(TEM) and scanning transmission electron microscopy(STEM) in the field of materials science were introduced. The various types of ET based on TEM as well as STEM were described in detail, which included bright-field(BF)-TEM tomography, dark-field(DF)-TEM tomography, weak-beam dark-field(WBDF)-TEM tomography, annular dark-field(ADF)-TEM tomography, energy-filtered transmission electron microscopy(EFTEM) tomography, high-angle annular dark-field(HAADF)-STEM tomography, ADF-STEM tomography, incoherent bright field(IBF)-STEM tomography, electron energy loss spectroscopy(EELS)-STEM tomography and X-ray energy dispersive spectrometry(XEDS)-STEM tomography, and so on. The optimized tilt series such as dual-axis tilt tomography, on-axis tilt tomography, conical tilt tomography and equally-sloped tomography(EST) were reported. The advanced reconstruction algorithms, such as discrete algebraic reconstruction technique(DART), compressed sensing(CS) algorithm and EST were overviewed. At last, the development tendency of ET in materials science was presented.
The precipitation sequence of η(MgZn2) phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy was investigated by examining samples aged at 135 ℃ for various times from 5 min to 6 h. High resolution transmission electron microscopy (HRTEM) observations and energy dispersive X-ray spectroscopy (EDX) analysis indicate that the precipitation sequence of η phase along low-angle grain boundaries should be supersaturated solid solution (SSS)→vacancy-rich clusters (VRC)→GP Ⅱ zones→η'→η. Based on the theory of non-equilibrium grain boundary segregation (NGS) and non-equilibrium grain boundary co-segregation (NGCS), the excessive solute elements gradually segregate to the grain boundaries by the diffusion of the solute-vacancy complex during aging treatment. The grain boundary segregation plays an important role in the nucleation and growth of VRC, GP Ⅱ zones, η' phase as well as η phase.