An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria.
The inheritance of mitochondrial (mt) DNA and chloroplast (cp) DNA was investigated in intergeneric hybrids from crossing between Cunninghamia lanceolata (Lamb.) Hook. and Cryptomeria fortunei Hooibrenk. The chloroplast trnL trnF region and one intra genic segment of the mitochondrial gene, Cox Ⅲ, were amplified from those of the parents and hybrids by PCR using gene specific primers. Cp and mtDNA polymorphisms of the amplified regions were detected between the parents after restriction digestions. Restriction fragment length polymorphism (RFLP) analysis revealed that all the F 1 individuals possessed Cox Ⅲ restriction fragment patterns (characteristic of the paternal parent Cryptomeria fortunei ) and the trnL trnF region (identical to the maternal parent Cunninghamia lanceolata ) showing that a different mode of inheritance for organelle DNA has occurred in the hybrids. Furthermore, the maternal inheritance of chloroplast DNA is reported here for the first time in coniferophyta.