The origin of the Rayleigh scattering ring effect has been experimentally examined on a quantum dot/metal film system, in which CdTe quantum dots embedded in PVP are spincoated on a thin Au film. On the basis of the angle-dependent, optical measurements under different excitation schemes (i.e., wavelength and polarization), we demonstrate that surface plasmon assisted directional radiation is responsible for such an effect. Moreover, an interesting phase-shift behavior is addressed.
Laser-induced fluorescence excitation spectra of jet-cooled NiS molecules were recorded in the energy range of 12200-13550 cm^-1. Four vibronic bands with rotational structure have been observed and assigned to the [12.4]^3∑-0-X^3∑0 transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.