您的位置: 专家智库 > >

师建兴

作品数:5 被引量:7H指数:2
供职机构:南开大学更多>>
发文基金:天津市应用基础与前沿技术研究计划天津市科技发展战略研究计划项目更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 4篇期刊文章
  • 1篇学位论文

领域

  • 5篇自动化与计算...

主题

  • 2篇问答系统
  • 2篇MODEL
  • 1篇向量
  • 1篇向量空间
  • 1篇向量空间模型
  • 1篇句法
  • 1篇和语
  • 1篇QUESTI...
  • 1篇SETS
  • 1篇STATEM...
  • 1篇WEB
  • 1篇WEB_DA...
  • 1篇ANSWER
  • 1篇FAQ
  • 1篇KNOWLE...
  • 1篇标引
  • 1篇CONFID...
  • 1篇RE-RAN...

机构

  • 5篇南开大学

作者

  • 5篇师建兴
  • 4篇袁晓洁
  • 4篇于士涛
  • 1篇杨娜
  • 1篇陈秋双
  • 1篇宁华

传媒

  • 2篇Journa...
  • 1篇计算机研究与...
  • 1篇计算机工程与...

年份

  • 1篇2010
  • 2篇2008
  • 2篇2007
5 条 记 录,以下是 1-5
排序方式:
Question classification in question answering based on real-world web data sets
2008年
To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.
袁晓洁于士涛师建兴陈秋双
基于FAQ的自动问答技术研究
随着互联网上Web信息爆炸性地增长,如何从海量数据中快速准确的找到所需信息已成为亟待解决的问题。传统以关键词模式的搜索服务在一定程度上已不能满足人们对信息获取的要求。自动问答系统利用自然语言的形式进行提问和回答,且返回的...
师建兴
文献传递
一种Web问答系统中基于XML片段的语义项模型被引量:2
2007年
问答网络论坛是一种重要的互联网服务形式. Yahoo Answers,Live QnA和百度知道均属此项服务.基于问答论坛所持有的大规模主题数据,可以建立诸多有价值的应用.自动问答系统就是其中之一,它在最近几年十分流行,尤其当TREC的问答方向出现之后.然而,仅采用信息检索方法会造成大量语义信息未能充分利用,问答系统的性能不够令人满意.为利用更多信息,定义一种语义项模型,作为信息检索中文档标引项的改进.语义项以XML片段形式存储,利用语法结构,将自然语言处理中的语义信息引入信息检索.基于语义项而代替标引项构建的问答系统,上层信息检索模型不做任何改动即可得到改善,显示出更好的性能.
于士涛袁晓洁师建兴杨娜
关键词:问答系统向量空间模型
问题分类中基于句法和语义信息的特征选择被引量:5
2008年
问题分类是问答系统中一个非常重要的子模块,其关键在于问题的特征选择。考虑了问题的句法信息和语义信息,提出了一种利用问题疑问词、依存关系、主要动词、中心名词和名词的最高上位词作为特征进行分类的新方法。实验中,采用k-最邻近和朴素贝叶斯两种分类算法对该方法进行测试,结果表明了该方法具有较好的分类效果。在自定义的分类体系上,分别达到了82.2%和83.7%的分类精度,性能高于基于bag-of-words的特征选择方法。
袁晓洁师建兴宁华于士涛
关键词:问答系统
Knowledge presentation model for QnA web forums
2007年
For an extract description of threads information in question and answer (QnA) web forums, it is proposed to construct a QnA knowledge presentation model in the English language, and then an entire solution for the QnA knowledge system is presented, including data gathering, platform building and applications design. With pre-defined dictionary and grammatical analysis, the model draws semantic information, grammatical information and knowledge confidence into IR methods, in the form of statement sets and term sets with semantic links. Theoretical analysis shows that the statement model can provide an exact presentation for QnA knowledge, breaking through any limits from original QnA patterns and being adaptable to various query demands; the semantic links between terms can assist the statement model, in terms of deducing new from existing knowledge. The model makes use of both information retrieval (IR) and natural language processing (NLP) features, strengthening the knowledge presentation ability. Many knowledge-based applications built upon this model can be improved, providing better performance.
于士涛袁晓洁师建兴
共1页<1>
聚类工具0