The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
A novel MOS-only voltage reference is presented,which is based on the threshold voltage difference between p-type and n-type MOSFETs. Its precision is improved by the cancellation of the process variation. The reference has been successfully implemented in a Chartered 0.35μm CMOS process. The occupied chip area is 0. 022mm^2. Measurements indicate that without trimming, the average output voltage error is 6mV at room temperature compared with the simulation result. The temperature coefficient is 180ppm/℃ in the worst case in the temperature range of 0 to 100℃ ,and the line regulation is ± 1.1%. The reference is applied in an adaptive power MOSFET driver.
提出一种用于DC/DC变换器的数字自适应电压定位(Adaptive Voltage Position,简称AVP)控制器,与一般的控制器相比,它能让变换器使用更小的输出电容,因此可有效降低成本。控制器用现场可编程门阵列(FieldProgrammable Gate Array,简称FPGA)实现。变换器的开关频率为1MHz,输入电压为12V,输出电压可调节范围为0.875~1.875V。当负载在0.2~10A之间突变时,输出电压的变化为40mV。实验结果证明了设计的正确性。
介绍了应用于低电压、大电流高频多相数字DC/DC控制器的设计。该控制器采用数字PID算法、电压模式控制,具有DVS功能。控制器在现场可编程门阵列(FPGA)上实现,采用Dither数字脉宽调制(DPWM)结构获得1MHz的开关频率。采用该控制器的四相Buck电路输入电压为12V,输出电压由8 bit VID码控制从0~1.6V可调,每相电流20A。实验结果证实了控制器的性能以及设计方法的正确性。