您的位置: 专家智库 > >

李颖

作品数:4 被引量:54H指数:4
供职机构:中国科学院南京土壤研究所更多>>
发文基金:中国科学院知识创新工程重要方向项目国家自然科学基金更多>>
相关领域:农业科学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇农业科学

主题

  • 3篇水稻
  • 2篇氮磷
  • 2篇土壤
  • 2篇土壤全磷
  • 2篇偏最小二乘
  • 2篇偏最小二乘回...
  • 2篇全磷
  • 2篇冠层
  • 2篇冠层光谱
  • 2篇光谱
  • 1篇氮含量
  • 1篇氮素
  • 1篇营养诊断
  • 1篇有机质
  • 1篇水稻冠层
  • 1篇水稻土
  • 1篇土地利用
  • 1篇土地利用方式
  • 1篇土壤有机
  • 1篇土壤有机质

机构

  • 4篇中国科学院
  • 4篇江苏省农业科...
  • 1篇南京农业大学

作者

  • 4篇薛利红
  • 4篇杨林章
  • 4篇李颖

传媒

  • 2篇土壤
  • 1篇中国农业科学
  • 1篇土壤学报

年份

  • 1篇2015
  • 3篇2014
4 条 记 录,以下是 1-4
排序方式:
基于可见–近红外光谱的水稻土全磷反演研究被引量:11
2014年
采用PLSR偏最小二乘法回归结合留一法交叉验证,利用长期定位试验田以及直湖港小流域面上的水稻土土壤样本建立最优模型,研究了不同光谱预处理方式对水稻土全磷可见-近红外高光谱反演精度的影响,探索水稻土全磷光谱反演的可行性;并结合简单相关系数法以及PLSR模型回归系数法分析了水稻土全磷光谱反演的重要波段。结果表明,光谱预处理方法对土壤全磷反演精度的影响不大;基于PLSR建立的水稻土全磷光谱反演模型的校正决定系数达0.85,交叉验证决定系数为0.70,RPD为1.8,有较好的模型精度;440~740nm为土壤全磷光谱反演的重要波段。利用PLSR对水稻土全磷进行光谱预测是可行的。
周鼎浩薛利红李颖杨林章
关键词:土壤全磷偏最小二乘回归光谱预处理水稻土
氮磷互作水稻冠层氮素敏感光谱筛选研究被引量:8
2015年
基于连续两年的水稻氮磷互作盆栽试验,于水稻拔节、抽穗、灌浆等主要生育时期同步测定了冠层反射光谱和水稻植株总氮含量,系统分析了350~1 330 nm波段范围内任意两波段组合而成的差值(DVI)、比值(RVI)及归一化(NDVI)光谱指数与植株总氮含量的关系,筛选了可用于氮磷互作环境下的最佳光谱指数,建立了估算模型,并与已有的水稻氮光谱反演指数进行了比较。结果表明:氮磷交互下水稻冠层光谱受氮素的影响明显高于磷素,呈现随施氮量的增加可见光区反射率下降,近红外区上升的规律;但对磷肥的响应受施氮水平的影响,施磷在缺氮情况下提高了可见光区和近红外区的反射率,不缺氮情况下却使可见光区反射率降低。与植株总氮含量相关性较好的波段组合基本不受植被指数构造形式的影响,表现较为稳定,主要分布在近红外(780~1 330 nm)/可见光(750~770 nm)区域、红边(640~700 nm)区域和可见光(450~500 nm)区域。但施磷与不施磷处理的总氮光谱指数敏感波段组合区域有所变化,施磷处理的敏感区域要小于不施磷处理,且相关性决定系数有所降低。存在对施磷不施磷处理都比较敏感的光谱指数区域,拔节、抽穗和灌浆期分别以RVI(FD719,FD740),NDVI(FD419,FD552),DVI(FD707,FD713)表现最佳,建模决定系数分别为0.87、0.80、0.87,几乎不受氮磷交互作用的影响,验证模型均方根误差分别为1.98、3.68、3.47。已有的氮光谱反演参数中则以m ND705、PRI、NDVI705表现最好,但其预测精度明显受磷肥作用的影响,尤其是在拔节期,不施磷处理下的精度要远低于施磷处理,且整体精度均低于本研究新选的氮光谱指数。因此,氮磷互作对水稻氮光谱反演指数的波段组合及预测精度产生影响,要提高氮素光谱诊断精度,需要根据情况选择适宜的光谱指数。
李颖薛利红马资厚潘复燕杨林章
关键词:水稻冠层光谱总氮含量
氮磷互作对水稻冠层光谱的影响及其PNN识别被引量:9
2014年
【目的】氮、磷均为作物必需的大量营养元素,其丰缺诊断直接关系到合理科学施肥,进而影响产量、效益以及环境。本文旨在研究准确、快捷、无损地区分水稻缺氮和缺磷信息的光谱识别方法,从而指导田间施肥决策,精确作物管理、节约种植成本并控制农田面源污染。【方法】基于水稻6个氮素及两个磷素营养水平交互下的盆栽试验,分别在分蘖、拔节和抽穗期测定水稻冠层的可见近红外反射光谱(350—1 330 nm)及植株全氮(TN)和全磷(TP)含量等数据,分析氮磷互作对水稻植株体内TN和TP含量以及冠层反射光谱的影响,并运用概率神经网络(PNN)分别对不同生育时期的冠层光谱进行氮水平、磷水平、氮磷交互水平和缺素水平4个尺度下的分类识别。为避免光谱测量时仪器误差和光照、风力、温度、水分等环境条件所造成光谱数据批次间的差异,PNN分类识别前对光谱数据进行标准化处理,并将其中2/3作为训练集,另外1/3作为测试集。【结果】植株全氮含量受氮肥、磷肥和氮磷交互作用的影响显著;植株全磷含量则主要受磷肥和氮肥水平的双重影响,但不存在氮磷交互作用。水稻冠层光谱对氮肥的响应规律不受磷肥水平的影响,缺氮使可见光区反射率升高,近红外区反射率下降。缺磷使近红外区反射率下降,但可见光区的响应则受氮肥水平的影响,施氮处理呈上升趋势,氮胁迫处理则呈现分蘖期下降、拔节期上升、抽穗期下降的趋势。利用冠层光谱PNN模型可以对各个生育时期氮水平、磷水平、氮磷交互水平和缺素水平等不同施肥尺度进行识别,拔节期分类精度最高,抽穗期分类精度相对最低。4种分类尺度下PNN模型对磷素水平的分类精度最高,分蘖期和拔节期分别为83%和94%;其次是缺素水平,分别为78%和88%;对氮素水平以及氮磷交互水平等有较多个分类输出的识别精度较低
李颖薛利红潘复燕杨林章
关键词:冠层光谱PNN营养诊断水稻
不同利用方式下土壤有机质和全磷的可见近红外高光谱反演被引量:33
2014年
以太湖流域直湖港小流域稻田、桃园和菜地的土壤样本为研究对象,研究了不同光谱建模方法和土地利用方式对土壤有机质和全磷高光谱反演的影响。结果表明:(1)偏最小二乘回归分析(Partial least squarer egression,PLSR)模型的建模和预测精度较高且稳定;人工神经网络中广义回归神经网络(Generalized regression neural network,GRNN)网络预测精度较高但易出现过拟合现象,反向传播神经网络(Back propagation neural network,BPNN)网络比较稳健但精度略低;偏最小二乘与人工神经网络相结合则可综合两者优点,改善复杂样本下的预测精度。(2)土壤有机质的光谱反演结果优于全磷。3种土地利用方式中,稻田的预测效果总体优于桃园和菜地。在当前研究区域内土地利用方式对土壤有机质光谱反演影响不大,但对全磷反演影响较大。今后利用光谱对土壤全磷反演时需分土地利用方式对模型进行校准。
薛利红周鼎浩李颖杨林章
关键词:偏最小二乘回归土壤有机质土壤全磷土地利用方式
共1页<1>
聚类工具0