2025年2月13日
星期四
|
欢迎来到叙永县图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
王爱琴
作品数:
1
被引量:35
H指数:1
供职机构:
西安交通大学航天航空学院机械结构强度与振动教育部重点实验室
更多>>
发文基金:
教育部“新世纪优秀人才支持计划”
国家自然科学基金
更多>>
相关领域:
理学
更多>>
合作作者
李录贤
西安交通大学航天航空学院机械结...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
理学
主题
1篇
无限元
1篇
HELMHO...
机构
1篇
西安交通大学
作者
1篇
李录贤
1篇
王爱琴
传媒
1篇
力学进展
年份
1篇
2007
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
无限元方法及其应用
被引量:35
2007年
无限元是几何上趋于无穷的单元,它是一种特殊的有限元,也是对有限元在求解无界域问题上的有效补充,并可实现与有限元间的无缝连接.无限元分为映射无限元和非映射无限元:映射无限元需要引入几何映射,在局部坐标系中构造插值形状函数,如Bettess元和Astley元;非映射无限元则直接在整体坐标系中构造插值形状函数,如Burnett元.本文评述求解无界域问题的无限元方法的研究现状和最新发展.首先介绍无限单元的概念和无限元方法的特点;围绕求解以Helmholtz方程控制的波动问题,评述几种常规无限单元的优劣,这些单元包括Bettess元、Astley元和Burnett元.然后介绍新近提出的广义无限元方法,以及与常规无限元方法的区别与联系.最后对无限元方法在各种问题中的应用做了总结.
李录贤
国松直
王爱琴
关键词:
无限元
HELMHOLTZ方程
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张