马健军
- 作品数:7 被引量:9H指数:2
- 供职机构:四川外国语大学更多>>
- 发文基金:国家科技支撑计划重庆市自然科学基金国家杰出青年科学基金更多>>
- 相关领域:理学文化科学更多>>
- 任意波数的二维Helmholtz方程外边值问题的Galerkin边界元法
- 用边界元法来求解定义于无界区域上的Helmholtz方程外边值问题有效而且相对简单。但是通过边界积分方程求解任意波数的二维Helmholtz方程Dirichlet和Neumann外边值问题时,当波数是Laplace算子D...
- 马健军
- 关键词:HELMHOLTZ方程最小二乘法超定方程组
- 文献传递
- Camassa-Holm方程的高阶局部中心间断Galerkin有限元法
- 2015年
- 发展一个求解具有尖波解的Camassa-Holm方程的高阶局部中心间断Galerkin有限元法,该方法首先将Camassa-Holm方程改写为一个守恒律方程和一阶方程组的耦合系统,然后,使用局部中心间断Galerkin法求解该守恒律和使用有限元法求解一阶方程组,数值算例用来检验该方法的精度和有效性.
- 马健军陈爱敏郝怡非
- 关键词:CAMASSA-HOLM方程有限元法
- Laplace方程Robin问题的虚边界配点求解法
- 2009年
- 针对Laplace方程Robin边值问题,采用虚边界元方法进行求解.首先基于双层位势的延拓,推导出虚边界积分方程,然后用配点法求解,计算时对虚边界上的虚拟密度函数分别采用常单元和线性元离散.该方法避免了传统边界元中的奇异积分,采用较少边界节点即可达到较高精度.数值算例验证了此方法的有效性.
- 马健军林鑫李茂军
- 关键词:LAPLACE方程双层位势虚边界元ROBIN问题
- 三维Helmholtz方程外边值问题的虚边界元法被引量:6
- 2009年
- 基于位势的延拓,推导出三维虚边界积分方程.通过选择不同的虚边界,避免相应内问题的特征值与波数重合,从而保证解的唯一性.数值算例验证了该方法求解任意波数三维Helmholtz方程外边值问题的有效性.
- 马健军祝家麟贾丽君
- 关键词:双层位势单层位势虚边界元
- 类Helmholtz方程的无网格局部Petrov-Galerkin法
- 2008年
- 将无网格局部Petrov-Galerk in方法和改进的移动最小二乘近似相结合,求解了二维类Helmholtz方程。改进的移动最小二乘近似采用加权正交函数系作为基函数,与传统的移动最小二乘近似相比,改进的移动最小二乘近似中的系数矩阵变成了非奇异的对角矩阵,因而无需计算系数矩阵的逆。数值结果表明该方法数值精度高,收敛速度快。
- 李茂军马健军
- 关键词:无网格局部PETROV-GALERKIN方法
- U型埋管周围温度场的边界元区域分解算法被引量:3
- 2008年
- 将U型垂直埋管地源热泵系统的稳态温度场分布归结为不同深度地层中分片常系数不连续介质的混合边值问题,应用基于边界元的非重叠型区域分解法把计算区域分解成2个子区域进行并行计算,在公共界面上满足温度和单位换热量的连续性.结果表明,对于土壤热源地下50m U型垂直埋管周围土壤的稳态温度场问题,其计算值与实验结果吻合良好,并进一步分析了不同土壤物性和不同回填材料对土壤温度分布的影响.
- 何媛媛李茂军马健军
- 关键词:边界元并行计算