冰雪反照率是影响和评估全球气候变化的重要因子。北极格陵兰岛拥有世界第二大冰盖,定量获取该地区反照率是研究北半球能量收支变化的关键。全球陆表卫星(global land surface satellite,GLASS)产品系统生产的反照率产品是目前国际上时间序列最长(1981—2017年)的全球反照率产品。利用格陵兰气候观测网络(Greenland climate network,GC-Net)与格陵兰冰架监测计划(programme for monitoring of the Greenland ice sheet,PROMICE)网络观测的反照率数据,评估了格陵兰地区GLASS地表反照率产品的精度;并基于2000—2017年的GLASS地表反照率产品,分析了格陵兰地区7月份反照率的年际变化趋势与空间分布特征。结果表明:GLASS与GC-Net反照率的均方根误差(root mean squared error,RMSE)为0.0778(决定系数R2=0.4907),与PROMICE反照率差异的RMSE为0.0786(R2=0.8999),GLASS产品的反照率数值呈现一定的低估现象,但已满足格陵兰地区冰雪反照率研究的需要。基于2000—2017年7月份格陵兰地区的GLASS反照率变化分析可以看出,格陵兰地区的反照率在此期间整体呈现变小的趋势,平均速率约为0.0006/a,变小的地区约占格陵兰总面积的64%;其中,位于格陵兰西部海拔750~1500 m之间的区域对气候变化最为敏感,反照率变小速率也最大,达到了0.026/a。
对于行星际深空探测(距地球1亿km以上)任务,由于受到计算机字长的限制,传统双程测速模型的计算精度无法满足高精度定轨的需要,其最大误差源于多普勒频移周计数终点和始点上行几何距离之间和下行几何距离之间差分值的计算过程。对此建立行星际双程测速模型,高精度地计算了两个差分值,推导模型的计算公式并给出详细步骤,同时给出计算过程中需要的切比雪夫差分多项式递推公式的形式。将该模型在深空探测器精密定轨与重力场解算软件系统(Wuhan University deep-space orbit determination and gravity recovery system,WUDOGS)中进行了实现,并以欧空局火星快车号(Mars express,MEX)探测任务为背景,利用该软件进行仿真测试,从计算精度和定轨结果两个方面验证该模型的优越性。结果表明,该模型将双程测速的计算值在计算机中表达的精度提高2个数量级,同时避免了定轨过程中引入额外的数值误差,可以为后续高精度的行星际深空探测任务的定轨提供参考。