刘国奇
- 作品数:4 被引量:3H指数:1
- 供职机构:河南师范大学更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于超像素/像素协同约束和稀疏分解活动轮廓模型被引量:2
- 2021年
- 针对水平集图像分割模型的分割结果不够准确且对初始轮廓位置和噪声敏感问题,提出了超像素/像素协同约束和稀疏分解的活动轮廓模型。首先引入超像素提取图像块信息构造符号压力函数防止轮廓在演化过程中陷入局部最优;其次,构建了基于超像素/像素协同约束的能量泛函以弥补超像素无法保留局部细节的缺陷;同时,为了解决基于非全局信息的活动轮廓模型演化速度慢的问题,提出模型利用超像素块加速轮廓演化;最后引入了稀疏分解对模型进行优化以减弱局部噪声对分割精度的影响。与多种水平集分割模型的实验结果对比,证明了提出方法的有效性,尤其与原始的二值选择和高斯滤波正则化水平集模型相比,提出方法对噪声和初始轮廓位置不敏感,平均Jaccard相似度系数提升了34%。
- 刘国奇刘国奇李旭升茹琳媛常宝方
- 关键词:图像分割活动轮廓模型稀疏分解
- 融合边界注意力的特征挖掘息肉小目标网络
- 2024年
- 从结肠图像中分割息肉小目标病变区域对于预防结直肠癌至关重要,它可以为结直肠癌的诊断提供有价值的信息。然而目前现有的方法存在2个局限性:一是不能稳健捕获全局上下文信息,二是未能充分挖掘细粒度细节特征信息。因此,提出融合边界注意力的特征挖掘息肉小目标网络(transformer feature boundary network,TFB-Net)。该网络主要包括3个核心模块:首先,采用Transformer辅助编码器建立长程依赖关系,补充全局信息;其次,设计特征挖掘模块进一步细化特征,学习到更好的特征;最后,使用边界反转注意力模块加强对边界语义空间的关注,提高区域辨别能力。在5个息肉小目标数据集上进行广泛实验,实验结果表明TFBNet具有优越的分割性能。
- 刘国奇刘国奇刘栋常宝方刘栋
- 关键词:TRANSFORMER卷积神经网络语义信息
- 基于多重注意力和schatten-p范数的息肉分割网络
- 2024年
- 自动准确的息肉定位分割方法可以在结直肠癌病变早期及时地发现息肉,大大降低癌变几率。编解码结构作为近年来息肉分割中最主流的网络结构,已经得到了很大的改进,如提高模型捕获全局上下文特征和局部特征的能力,使用深层特征对浅层解码做指导。但是息肉形状和大小不一,在编码时,由于卷积特性容易过于陷入局部信息挖掘,而失去远程信息依赖关系;还有一些息肉图像存在对比度低、空间复杂的特性,导致息肉与背景两者极易混淆。本文提出了基于多重注意力和schatten-p范数的息肉分割网络。其中,轴向多重注意力模块利用轴向注意力补充图像中的远程上下文关系,同时补充对边缘、背景信息的关注以实现特征互补,在注意全局特征的同时加强对局部细节特征的捕捉;利用矩阵奇异值和矩阵隐含信息的关联性,引入schatten-p范数作约束,从矩阵角度分析数据,辅助模型辨别前景和背景。通过设置大量实验,证明了本文提出方法的有效性,并且MASNet在Kvasir-SEG数据集上对比不同的方法,取得了较好的分割结果。
- 李苏刘国奇刘国奇赵曼琪
- 关键词:注意力
- 基于联合约束策略和稀疏表示的图像分割被引量:1
- 2021年
- 基于像素级的交互式图像分割算法对初始种子位置和噪声敏感,同时仅基于超像素的分割方法无法保留图像细节经常导致分割结果出现欠分割问题。针对上述问题,提出超像素/像素约束和稀疏表示的图像分割模型。该方法利用高斯函数分别对像素和超像素构造了相互约束的代价函数,引入了稀疏分解对模型进行优化以提升模型对图像噪声的鲁棒性,最后利用联合优化策略对代价函数求解估计出目标和背景标记实现目标提取。实验结果表明,与现有的分割方法相比,提出的方法能获得较好的分割效果,对高斯噪声和椒盐噪声具有较强的鲁棒性。
- 刘国奇刘国奇李旭升宋一帆
- 关键词:概率图模型交互式图像分割