The field emission from pure boron-nitride nanotube and boron-nitride nanotube encapsu- lated with natrium atoms with the electric field perpendicular to the axis of nanotubes is simulated based on a self-consistent method using the density-functional formalism. It has been found that the nearly-free-electron states in boron-nitride nanotube would perform very well in field emissions after natrium atom encapsulation. The characters of total energy distribution curves are analyzed to seek the function of nearly-free-electron states in the field emission, with special attention to response of the emission current to the external electric field. At last, the perpendicular emission geometry is found to possess a very sensitive response degree which is supposed to be related to specific expansion orientation of the nearly-free-electron states in this system.