您的位置: 专家智库 > >

屠轶清

作品数:1 被引量:11H指数:1
供职机构:澳大利亚迪肯大学更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇自动化与计算...

主题

  • 1篇支持向量
  • 1篇支持向量机
  • 1篇主动学习策略
  • 1篇文本分类
  • 1篇向量
  • 1篇向量机

机构

  • 1篇上海交通大学
  • 1篇澳大利亚迪肯...

作者

  • 1篇刘宏
  • 1篇黄上腾
  • 1篇屠轶清

传媒

  • 1篇计算机科学

年份

  • 1篇2003
1 条 记 录,以下是 1-1
排序方式:
一种新的支持向量机主动学习策略及其在文本分类中的应用被引量:11
2003年
There are two well-known characteristics about text classification. One is that the dimension of the sample space is very high, while the number of examples available usually is very small. The other is that the example vectors are sparse. Meanwhile, we find existing support vector machines active learning approaches are subject to the influence of outliers. Based on these observations, this paper presents a new hybr/d active learning approach. In this approach, to select the unlabelled example(s) to query, the learner takes into account both sparseness and high-dimension characteristics of examples as well as its uncertainty about the examples' categorization. This way, the active learner needs less labeled examples, but still can get a good generalization performance more quickly than competing methods. Our empirical results indicate that this new approach is effective.
刘宏屠轶清黄上腾
关键词:支持向量机主动学习策略文本分类
共1页<1>
聚类工具0