通过溶胶凝胶法制备出LiMn_2O_4和LiMn_(1.92)Mg_(0.08)O_(3.84)Br_(0.16)锂离子电池正极材料,并用XRD、SEM、XPS、充放电测试和CV对其结构、形貌、化学成份以及电化学性能进行了研究。结果表明,Mg、Br的掺杂未改变LiMn_2O_4的结构。在0.5 C倍率下,LiMn_(1.92)Mg_(0.08)O_(3.84)Br_(0.16)的放电比容量为119 m Ah/g,与LiMn_2O_4相比,其首次放电比容量提高了3.6%,循环100次后,Li Mn1.92Mg0.08O3.84Br0.16的容量保持率高达86.9%。在5 C倍率下,LiMn_(1.92)Mg_(0.08)O_(3.84)Br_(0.16)的放电比容量为91.1 m Ah/g,比LiMn_2O_4提高了24.1%。实验表明,Mg、Br共同掺杂提高了LiMn_2O_4的放电比容量,并明显改善其循环稳定性和倍率性能,从而获得了较好的综合电化学性能。
Based on the method of in situ polymerization synthesis combined with two-step sinter- ing process, LiFel-xVx(PO4)(3-y)/3Fy/C was prepared. The effects of V and F co-doping on the structure, morphology, and electrochemical performances of LiFePO4/C were in- vestigated by X-ray diffraction, Fourier transform infrared spectra, scanning electron mi- croscope, charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results indicated that the V and F co-doping did not destroy the olivine structure of LiFePO4/C, but it can stabilize the crystal structure, decrease charge transfer resistance, enhance Li ion diffusion velocity, further improve its cycling and high-rate capabilities of LiFePO4/C.