穆瑞娟
- 作品数:1 被引量:0H指数:0
- 供职机构:山东师范大学物理与电子科学学院更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于低秩约束和字典学习的图像超分辨率重建
- 2016年
- 基于学习的超分辨率重建算法通过对图像的整体信息学习进行重建,没有对图像的内部结构信息特征进行分解考虑.基于图像的低秩稀疏分解理论,本文提出一种新的图像超分辨率重建算法.在研究图像矩阵的低秩部分与稀疏部分信息特征的基础上,结合图像自身蕴含的先验信息,本文分两步对图像恢复重建.首先,将图像的非局部自相似性先验信息引入图像的基本重建模型.在该模型下利用相似图像块矩阵的天然低秩性约束得到初始估计高分辨率图像.第二步,提出一种改进的字典学习算法恢复出初始估计高分辨率图像中缺失的高频成份信息,获得最终的高分辨率图像.为了使高频成份得到更好的恢复,在字典学习样本集的构建阶段应用了一种基于低秩稀疏分解理论的样本集构建方法.实验分析表明,本文提出的算法与现有主流算法相比,在主观视觉效果和客观性能分析上都能显示出更好的优越性.
- 穆瑞娟徐胜南王春兴
- 关键词:超分辨率字典学习