针对风电机组齿轮箱运行过程中故障样本缺乏、正常样本充裕的特点,提出基于增量代价敏感支持向量机(Incremental Cost-sensitive Support Vector Machine,ICSVM)的风电机组齿轮箱故障诊断方法。由于齿轮箱故障样本缺乏,建立以误分类代价最小化为目标的代价敏感支持向量机故障诊断模型;在增量训练代价敏感支持向量机阶段,利用KKT条件,以增量样本和初始样本训练增量代价敏感支持向量机。实验结果表明,该方法能有效地减少平均误分类代价和训练时间,提高齿轮箱故障识别率。
针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系统故障诊断方法.该方法选择风电机组功率输出作为主要状态参数,利用Pearson相关系数对风电数据采集与监视控制系统中风电机组历史运行数据进行相关性分析,剔除与功率输出状态参数相关性较低的特征,对余下特征进行二次分析,减少样本特征.将数据集分为训练集和测试集,训练集用来训练所提故障诊断模型,测试集用来进行测试.利用国内风电场实际运行数据进行实验验证.实验结果表明,与其他多种参数优化方法相比,所提方法故障诊断准确率和Kappa系数更高.