张骁
- 作品数:1 被引量:9H指数:1
- 供职机构:长安大学信息工程学院更多>>
- 发文基金:国家高技术研究发展计划更多>>
- 相关领域:交通运输工程更多>>
- 多特征多阈值级联AdaBoost行人检测器被引量:9
- 2015年
- 为了满足更快、更准、更鲁棒的行人检测需求,考虑交通监控视频图像质量不高与局部特征不明显的缺点,采用简单的行人特征来实现行人检测。除矩形度、高宽比、轮廓复杂度、宽度比、行人面积特征外,特定选用了对遮挡等干扰具有强鲁棒性的头部圆形度这一简单的局部特征。考虑交通监控视频图像中行人的尺寸变化,引入区域划分策略划分图像区域。兼顾高检测率和低误检率,根据分类误差最小原则与正样本分类率最大原则训练多个单特征多阈值AdaBoost行人检测器。为了优化多个行人检测器级联后的检测性能,在兼顾检测性能和检测速度的基础上,定义了以贡献率作为行人检测器的级联规则,依据贡献率大小确定的级联次序为基于高宽比、宽度比、矩形度、行人面积、轮廓复杂度和头部圆形度的行人检测器,依次进行级联,建立了新的多特征多阈值级联AdaBoost行人检测器。选用3个交通场景对行人检测器进行测试,并与单级AdaBoost行人检测器与现有2种级联AdaBoost行人检测器进行比较。分析结果表明:在3个交通场景的检测中,相比其他几种行人检测器,多特征多阈值级联AdaBoost行人检测器具有较高检测率、较快的检测速度和较低误检率,检测率最低为96.70%,误检率最高为0.67%,检测时间小于5s,满足交通场景中对行人检测实时性和可靠性的要求。
- 崔华张骁郭璐袁超薛世焦宋焕生
- 关键词:行人检测ADABOOST分类器