李喆
- 作品数:2 被引量:0H指数:0
- 供职机构:北京航空航天大学生物与医学工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:医药卫生电子电信更多>>
- 基于特征点的人体红外图像自动分割技术
- 2017年
- 目的医学红外人体图像区域分割是大规模医学红外图像处理的关键步骤。为快速有效地获取医学红外图像中的人体信息,本文提出一种在医学红外图像中自动提取并划分人体区域的方法。方法由红外热像仪在静室中采集人的裸体红外图像,然后通过对红外人体图像灰度分布特征分析而取得的阈值来获取人体区域,以人体横向距离(宽度)函数结合人体红外图像中的特殊方向亮带的识别,提取人体的特征点,并通过特征点对人体区域进行分割。结果对来自8人的72幅图像进行验证,其中64幅可以正确分割,证明该方法可以对直立姿势的红外人体图像进行自动区域分割与提取。结论该红外人体图像区域自动分割算法可为基于红外图像的疾病筛查及计算机辅助诊断提供技术基础。
- 李明睿张弛丁宁李喆李德玉
- 关键词:红外图像阈值
- 基于相关指数分析增强的功能近红外光谱脑机接口
- 2017年
- 由于对运动伪迹不敏感、适合特殊人群和可穿戴式检测等优势,功能近红外光谱技术(fNIRS)在脑机接口(BCI)、心理认知等领域发挥着日益重要的作用。肢体运动想象是BCI在残疾人康复训练等领域应用的重要范式,伴随穿戴式fNIRS的发展,有望帮助残疾人在家庭或社区开展长期脑康复训练。本文针对目前基于fNIRS的运动想象任务分类准确率普遍不高这一现状,应用基于Pearson积差相关系数的相关指数R^2,对被试进行个性化参数优化,期望改善运动想象的分类结果。实验采集了17名被试的左、右手运动想象任务期间大脑皮层主运动区的血红蛋白浓度变化数据,并采用支持向量机(SVM)分类。结果表明,经过R^2参数优化之后,分类准确率相对无优化情况显著提升,分类准确率在60%以上的被试比例由原本的58.8%提高到了94%,分类准确率在65%以上的被试比例由原本的41.2%提升到了64.7%。
- 李喆张屾郑燕春汪待发马建爱王玲李德玉
- 关键词:支持向量机