曹婷
- 作品数:2 被引量:12H指数:2
- 供职机构:中国科学院计算技术研究所更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划国家重点实验室开放基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 面向大数据处理的基于Spark的异质内存编程框架被引量:9
- 2018年
- 随着大数据应用的发展,需要处理的数据量急剧增长,企业为了保证数据的及时处理并快速响应客户,正在广泛部署以Apache Spark为代表的内存计算系统.然而TB级别的内存不但造成了服务器成本的上升,也促进了功耗的增长.由于DRAM的功耗、容量密度受限于工艺瓶颈,无法满足内存计算快速增长的内存需求,因此研发人员将目光逐渐移向了新型的非易失性内存(non-volatile memory,NVM).由DRAM和NVM共同构成的异质内存,具有低成本、低功耗、高容量密度等特点,但由于NVM读写性能较差,如何合理布局数据到异质内存是一个关键的研究问题.系统分析了Spark应用的访存特征,并结合OpenJDK的内存使用特点,提出了一套管理数据在DRAM和NVM之间布局的编程框架.应用开发者通过对本文提供接口的简单调用,便可将数据合理布局在异质内存之中.仅需20%~25%的DRAM和大量的NVM,便可以达到使用等量的DRAM时90%左右的性能.该框架可以通过有效利用异质内存来满足内存计算不断增长的计算规模.同时,"性能/价格"比仅用DRAM时提高了数倍.
- 王晨曦吕方吕方曹婷崔慧敏曹婷冯晓兵
- 关键词:SPARK编程框架
- 大规模集群上多维FFT算法的实现与优化研究被引量:3
- 2017年
- 快速傅里叶变换(fast Fourier transform,FFT)是用于计算离散傅里叶变换(discrete Fourier transform,DFT)或其逆运算的快速算法,在工程、科学和数学领域的应用非常广泛,例如信号分解、数字滤波、图像处理等。因此,在实际应用中对FFT算法进行细粒度优化是非常重要的。研究了FFT算法常用的分解策略以及FFT算法在大规模集群系统上的并行实现,并提出了相关的优化策略。在此基础上,对多种FFT算法在不同平台上进行了性能评估,并分析了各算法的实现、优缺点及其在大规模计算时的可扩展性。实验结果表明,相关研究有助于对现有的FFT算法进行进一步的优化,以及指导如何在大规模CPU+GPU的异构系统上根据不同需求选择实现性能更优的FFT算法。
- 李琨贾海鹏曹婷张云泉