王丹丹
- 作品数:7 被引量:261H指数:6
- 供职机构:西北农林科技大学机械与电子工程学院更多>>
- 发文基金:国家高技术研究发展计划陕西省自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术农业科学更多>>
- 基于平滑轮廓对称轴法的苹果目标采摘点定位方法被引量:23
- 2015年
- 果实采摘点的精确定位是采摘机器人必须解决的关键问题。鉴于苹果目标具有良好对称性的特点,利用转动惯量所具有的平移、旋转不变性及其在对称轴方向取得极值的特性,提出了一种基于轮廓对称轴法的苹果目标采摘点定位方法。为了解决分割后苹果目标边缘不够平滑而导致定位精度偏低的问题,提出了一种苹果目标轮廓平滑方法。为了验证算法的有效性,对随机选取的20幅无遮挡的单果苹果图像分别利用轮廓平滑和未进行轮廓平滑的算法进行试验,试验结果表明,未进行轮廓平滑算法的平均定位误差为20.678°,而轮廓平滑后算法平均定位误差为4.542°,比未进行轮廓平滑算法平均定位误差降低了78.035%,未进行轮廓平滑算法的平均运行时间为10.2ms,而轮廓平滑后算法的平均运行时间为7.5ms,比未进行轮廓平滑算法平均运行时间降低了25.839%,表明平滑轮廓算法可以提高定位精度和运算效率。利用平滑轮廓对称轴算法可以较好地找到苹果目标的对称轴并实现采摘点定位,表明将该方法应用于苹果目标的对称轴提取及采摘点定位是可行的。
- 王丹丹徐越宋怀波何东健
- 关键词:机器人水果转动惯量对称轴
- Kinect在现代农业信息领域中的应用与研究进展被引量:6
- 2015年
- 2010年微软公司推出的Kinect体感设备不仅在游戏界引起了巨大的轰动,在其它多个研究领域也得到了越来越多的重视。本研究对Kinect在农业信息领域的应用现状和发展趋势做了深入分析,阐述了Kinect在果实目标检测识别、植物三维形态重建、畜牧养殖监督系统及农业虚拟教学等领域的应用,探讨了Kinect在农业领域应用中存在的问题及其在农业应用上的优缺点,并提出了Kinect在信息农业领域未来的发展方向及前沿问题。
- 余秀丽王丹丹牛磊磊宋怀波何东健胡少军耿楠
- 关键词:KINECT农业信息目标检测三维重建
- 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别被引量:83
- 2019年
- 疏果前期苹果背景复杂、光照条件变化、重叠及被遮挡,特别是果实与背景叶片颜色极为相近等因素,给其目标识别带来很大困难。为识别疏果前期的苹果目标,提出基于区域的全卷积网络(region-based fully convolutional network,R-FCN)的苹果目标识别方法。该方法在研究基于ResNet-50和ResNet-101的R-FCN结构及识别结果的基础上,改进设计了基于ResNet-44的R-FCN,以提高识别精度并简化网络。该网络主要由ResNet-44全卷积网络、区域生成网络(RegionProposal Network, RPN)及感兴趣区域(Region of Interest, RoI)子网构成。ResNet-44全卷积网络为基础网络,用以提取图像的特征,RPN根据提取的特征生成Ro I,然后Ro I子网根据ResNet-44提取的特征及RPN输出的Ro I进行苹果目标的识别与定位。对采集的图像扩容后,随机选取23 591幅图像作为训练集,4 739幅图像作为验证集,对网络进行训练及参数优化。该文提出的改进模型在332幅图像组成的测试集上的试验结果表明,该方法可有效地识别出重叠、被枝叶遮挡、模糊及表面有阴影的苹果目标,识别的召回率为85.7%,识别的准确率为95.1%,误识率为4.9%,平均速度为0.187 s/幅。通过与其他3种方法进行对比试验,该文方法比FasterR-CNN、基于ResNet-50和ResNet-101的R-FCN的F1值分别提高16.4、0.7和0.7个百分点,识别速度比基于ResNet-50和ResNet-101的R-FCN分别提高了0.010和0.041 s。该方法可实现传统方法难以实现的疏果前苹果目标的识别,也可广泛应用于其他与背景颜色相近的小目标识别中。
- 王丹丹何东健
- 关键词:图像识别小苹果目标识别
- 融合K-means与Ncut算法的无遮挡双重叠苹果目标分割与重建被引量:37
- 2015年
- 重叠苹果目标的准确分割是采摘机器人必须解决的关键问题之一。针对现有重叠苹果目标分割方法不能保留重叠部分轮廓信息的问题,提出了一种无枝叶遮挡的双果重叠苹果目标分割方法。该方法首先利用K-means聚类算法进行图像分割以提取苹果目标区域,然后利用Normalized Cut(Ncut)算法提取苹果目标轮廓,以实现未被遮挡苹果目标完整轮廓的准确提取,最后利用Spline插值算法对遮挡的苹果目标进行轮廓重建。为了验证算法的有效性,对20幅无枝叶遮挡双果重叠的苹果图像进行试验,并将该算法与寻找2个有效凹点用其连线分割重叠苹果目标,把分离的2个轮廓分别用Hough变换重建轮廓的方法进行对比。试验结果表明,对于图像中未被遮挡的苹果目标,利用该研究算法的平均分割误差为3.15%,提取的苹果目标与原始图像中苹果目标的平均重合度为96.08%,平均误差比Hough变换重建算法低7.73%,平均重合度高9.71%,并且该研究算法能够很好地保留未被遮挡苹果目标的完整轮廓信息,提高了分割精度。对于重叠被遮挡的苹果目标,平均分割误差和平均重合度分别为5.24%和93.81%,比Hough变换重建算法的平均分割误差低11.35%,平均重合度高12.74%,表明该算法可以较好地实现重叠被遮挡苹果目标的轮廓重建,研究结果可为实现枝叶遮挡影响下的多果重叠目标分割与重建提供参考。
- 王丹丹徐越宋怀波何东健张海辉
- 关键词:图像分割图像重建K-MEANS
- 苹果采摘机器人视觉系统研究进展被引量:96
- 2017年
- 视觉系统是苹果采摘机器人最重要的组成部分之一,它在一定程度上决定了苹果采摘机器人完成采摘任务的质量及速度。为明确苹果采摘机器人视觉系统所面临的挑战及未来研究方向,该文首先对世界各国现有苹果采摘机器人的研究情况从视觉传感器类型、视觉系统硬件组成、采摘成功率及作业时间等方面进行了概述,然后分别对现有苹果采摘机器人视觉系统中苹果图像分割方法、受着色度、光照、表面阴影、振荡、重叠及遮挡等影响下的苹果目标的识别与定位方法、苹果采摘机器人视觉系统对枝干等障碍物的识别方法以及视觉系统中双目视觉技术立体匹配问题进行了综述,进一步分析了苹果采摘机器人视觉系统中存在的问题,指出视觉系统结构的优化、视觉系统中智能算法的优化、提高视觉系统的实时性、振荡苹果目标的识别与定位、视觉系统受振动影响时苹果目标的识别与定位及提高视觉系统的性价比等方面将成为未来重点研究方向,为深入研究苹果采摘机器人视觉系统提供参考。
- 王丹丹宋怀波何东健
- 关键词:机器人图像识别机械化苹果视觉系统
- 基于SVM的小麦叶部病害识别方法研究被引量:20
- 2014年
- 为了准确识别小麦叶部常见病害,为小麦病情诊断和发展状况判断提供科学依据,设计并实现了一种基于SVM(Support Vector Machine)的小麦叶部常见病害识别方法。该方法可以实现对小麦白粉病、条锈病和叶锈病的准确识别。首先,基于中值滤波法和K均值聚类算法,实现了图像的去噪及病斑分割;然后,提取了病斑区域形状特征和纹理特征;最后,利用SVM算法对小麦叶部病害进行了分类识别。随机试验结果表明,利用所提取的特征可以有效地实现小麦叶部常见病害的识别,基于形状特征的综合识别率可达99.33%;利用SVM算法进行小麦病害叶片识别是有效的、可行的。该方法对于农作物病害智能识别的推广具有较好的借鉴意义。
- 余秀丽徐超王丹丹张卫园屈卫锋宋怀波
- 关键词:小麦叶片特征提取支持向量机
- 基于光照无关图理论的苹果表面阴影去除方法被引量:15
- 2014年
- 阴影影响下苹果目标的快速准确识别是苹果采摘机器人视觉系统必须解决的关键技术之一。为了实现阴影影响下苹果目标的准确识别,该研究采用光照无关图理论实现了苹果表面阴影的去除。以自然场景下获取的受不同程度阴影影响的苹果目标图像为研究对象,首先利用光照无关图原理获取阴影苹果图像的光照无关图,达到突出苹果目标阴影区域的目的;其次提取原图像的红色分量信息并与关照无关图进行相加处理;最后将相加后的图像进行自适应阈值分割处理,达到去除阴影的目的。为了验证该算法的有效性与准确性,利用20幅受阴影影响的苹果目标图像进行了试验,并与Otsu算法、1.5*R-G色差算法进行了对比,试验结果表明:Otsu算法仅能识别出未受阴影影响的苹果区域;1.5*R-G色差算法受光照影响较大,对于苹果图像的相对强光照区域和部分阴影区域不能有效识别;基于光照无关图的苹果表面阴影去除方法对阴影影响下的苹果目标图像分割效果较好,可以克服光照过强的问题,并准确识别出阴影影响下的苹果目标。文中算法的平均假阳性率为17.49%,比Otsu算法降低了52.84%,比1.5*R-G算法降低了26.18%;文中算法的平均重叠系数为86.59%,比Otsu算法提高了47.2%,比1.5*R-G算法提高了11.03%;表明利用光照无关图可以有效地去除苹果表面的阴影,将其应用于阴影影响下的苹果目标的识别是可行的。
- 宋怀波屈卫锋王丹丹余秀丽何东健
- 关键词:水果苹果OTSU