您的位置: 专家智库 > >

白露

作品数:2 被引量:13H指数:2
供职机构:中国科学院计算技术研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...

主题

  • 1篇查询
  • 1篇查询图
  • 1篇查询推荐
  • 1篇查询意图
  • 1篇长尾
  • 1篇词项

机构

  • 2篇中国科学院
  • 1篇中国科学院研...

作者

  • 2篇郭嘉丰
  • 2篇程学旗
  • 2篇曹雷
  • 2篇白露

传媒

  • 1篇计算机学报
  • 1篇中文信息学报

年份

  • 1篇2013
  • 1篇2012
2 条 记 录,以下是 1-2
排序方式:
基于半监督话题模型的用户查询日志命名实体挖掘被引量:6
2012年
基于用户查询日志的命名实体挖掘,目标是从用户查询日志中挖掘具有指定类别的命名实体。已有研究工作提出一种基于种子实体的挖掘方法,利用实体类别与候选实体之间的模板分布相似性来对候选实体进行排序。然而该挖掘方法忽略了命名实体具有歧义性、查询模板具有多义性和未标注实体信息,因而不能够有效的对候选实体进行排序。该文采用半监督话题模型,利用查询模板之间的关系来学习实体类别的模板分布,进而改善候选实体的排序效果。实验结果表明了该文提出方法的有效性。
曹雷郭嘉丰白露程学旗
基于查询意图的长尾查询推荐被引量:7
2013年
查询推荐是一种提升用户搜索效率的重要工具.传统的查询推荐方法关注频度较高的查询,但对于那些频度较低的长尾查询,由于其信息的稀疏性而难以产生好的推荐效果.另外,传统的方法由于没有考虑查询意图对推荐结果的影响,故对长尾查询的推荐会受到查询中噪声单词的影响.该文提出了一种新的关于词项查询图(term-query graph)概率混合模型,该模型能够准确地发掘出用户的查询意图.另外,文中还提出了一种融合查询意图的查询推荐方法,该方法可以将新查询中单词的推荐结果按查询意图自然地融合起来,从而避免了噪声单词对推荐结果的影响.实验结果表明,通过考虑查询意图,可以显著提高长尾查询推荐的相关性.
白露郭嘉丰曹雷程学旗
关键词:查询推荐查询意图
共1页<1>
聚类工具0